|
|
Zoning characteristics of uranium and associated elements in the No. 510 uranium deposit, Sichuan |
WANG Yong-Fei1( ), DONG Zhi-Kai2, LYU Wen-Xiang1, LI Bao-Xin1, MA Bing1 |
1. Sichuan Institute of Nuclear Geological Survey, Chengdu 610061, China 2. Sichuan Chuanhe Geological Engineering Co., Ltd., Chengdu 610053, China |
|
|
Abstract Previous studies of associated elements of the No. 510 uranium deposit in Sichuan mostly focus on individual ore blocks. To classify the types of associated resources in the whole deposit, this study conducted a comprehensive comparative analysis based on the investigation of horizontal and vertical zoning of associated elements of uranium ores, as well as the existing study results of rock and deposit geochemistry and metallogenic regularity. Accordingly, this study ascertained the zoning characteristics of associated minerals in the whole deposit. In the vertical direction, the deposit was divided into three mineral assemblage zones: the iron-nickel sulfide-uranium mineralization zone, the low-content sulfide-uranium mineralization zone, and the sphalerite-low-content iron-nickel sulfide-uranium mineralization zone. In the horizontal direction, the deposit was divided into the upper Ni, V → Zn → Ni (low-content Cu) and the lower Mo, Ni, Zn, V → Zn, Ni → Mo, Ni, Zn → Zn (low-content Cu) metallogenic element assemblage transition zones. The smelting and recovery experiments were completed for uranium and associated metals such as molybdenum, nickel, and zinc in the deposit, increasing the economic value of the deposit and expanding economic benefits. This study determined six types of associated resources for the No. 510 uranium deposit and comprehensively evaluated the utilization of associated elements, providing theoretical guidance for both the deep prospecting prediction and the prospecting of replacement resources in similar mines.
|
Received: 26 May 2022
Published: 11 October 2023
|
|
|
|
|
8]) 1—quaternary system; 2—lower member of Lalong formation; 3—upper member of Ta'er formation; 4—lower member of Ta'er formation; 5—upper member of Yangchanggou formation; 6—lower member of Yangchanggou group; 7—upper member of Sulimutang formation; 8—lower section of Sulimutang formation; 9—stratigraphic boundary; 10—measured and inferred faults; 11—dyke(μ—porphyrite type;sl—slate;si—siliceous rock;Dm—dolomite); 12—uranium deposit; 13—drilling and numbering; 14—sampling location and number ">
|
Geological sketch of 510 uranium deposit (modified from Chen T H,et al.[8]) 1—quaternary system; 2—lower member of Lalong formation; 3—upper member of Ta'er formation; 4—lower member of Ta'er formation; 5—upper member of Yangchanggou formation; 6—lower member of Yangchanggou group; 7—upper member of Sulimutang formation; 8—lower section of Sulimutang formation; 9—stratigraphic boundary; 10—measured and inferred faults; 11—dyke(μ—porphyrite type;sl—slate;si—siliceous rock;Dm—dolomite); 12—uranium deposit; 13—drilling and numbering; 14—sampling location and number
|
8]) 1—lower member of Ta'er formation; 2—upper member of Yangchanggou formation;3—lower member of Yangchanggou formation;4—limestone;5—slate;6—siliceous;7—fine sandstone;8—reverse fault;9—strike-slip thrust fault; 10—location of exploration line and number;11—adit;12—borehole and number;13—industrial uranium ore body ">
|
Distribution map of ore body in the third middle section(3 478.61 m) of Zhongchanggou ore section of 510 uranium deposit (modified from Chen T H,et al.[8]) 1—lower member of Ta'er formation; 2—upper member of Yangchanggou formation;3—lower member of Yangchanggou formation;4—limestone;5—slate;6—siliceous;7—fine sandstone;8—reverse fault;9—strike-slip thrust fault; 10—location of exploration line and number;11—adit;12—borehole and number;13—industrial uranium ore body
|
样品编号 | V | Ni | Zn | Mo | U | 取样位置 | 取样深度/m | 备注 | XL-7 | 348 | 391 | 527 | 19.9 | 1502 | ZK20-5 | 144.4 | 雪莲沟矿段 | XL-16 | 212 | 23.3 | 104 | 61.1 | 6.4 | ZK20-5 | 877.0 | XL-17 | 206 | 88.3 | 105 | 95.6 | 44.5 | ZK20-5 | 878.0 | XL-18 | 195 | 675 | 136 | 985 | 415 | ZK20-5 | 878.7 | XL-19 | 196 | 509 | 87.8 | 183 | 182 | ZK20-5 | 879.0 | XL-20 | 185 | 83.4 | 95.7 | 130 | 62 | ZK20-5 | 879.3 | XL-21 | 177 | 918 | 101 | 805 | 519 | ZK20-5 | 879.7 | XL-22 | 149 | 635 | 33.4 | 170 | 177 | ZK20-5 | 880.0 | KY-31 | 411 | 63.2 | 794 | 29.4 | 90.4 | ZK4-1 | 254.0 | 向阳西沟矿段 | KY-32 | 673 | 298 | 2436 | 118 | 366 | ZK4-1 | 255.0 | KY-33 | 248 | 108 | 905 | 29.4 | 2072 | ZK4-1 | 256.0 | KY-34 | 3371 | 327 | 1016 | 73.9 | 103 | ZK4-1 | 256.4 | KY-43 | 237 | 58.7 | 254 | 8.7 | 68.4 | ZK3-5 | 740.8 | KY-44 | 246 | 91.4 | 976 | 4.36 | 1403 | ZK3-5 | 741.5 | KY-45 | 219 | 57.4 | 201 | 20.6 | 13.2 | ZK3-5 | 729.0 | KY-46 | 2531 | 325 | 1401 | 359 | 103 | ZK3-5 | 581.6 | KY-47 | 4472 | 317 | 1291 | 67.5 | 80.1 | ZK3-5 | 792.5 | KY-48 | 156 | 59.7 | 1087 | 20.9 | 613 | ZK3-5 | 870.0 | KY-49 | 153 | 70.9 | 1491 | 13.6 | 332 | ZK3-5 | 874.0 | KY-50 | 348 | 141 | 1354 | 33.9 | 2505 | ZK3-5 | 880.0 | KY-51 | 55.7 | 54.5 | 192 | 0.45 | 98.2 | ZK3-5 | 880.8 | KY-52 | 112 | 52.1 | 78.4 | 6.16 | 46.3 | ZK3-5 | 886.0 | KY-53 | 655 | 236 | 13271 | 79.3 | 29951 | ZK3-5 | 890.0 | KY-2 | 278 | 94.5 | 345 | 8.54 | 109 | ZK27-4 | 384.0 | 向阳东沟矿段 | KY-3 | 438 | 499 | 1144 | 52.9 | 62.3 | ZK27-4 | 385.0 | KY-4 | 208 | 598 | 9917 | 66.5 | 1050 | ZK27-4 | 439.5 | KY-9 | 71.4 | 74.7 | 819 | 69 | 238 | ZK27-6-2 | 802.2 | KY-10 | 38.8 | 17.5 | 210 | 24 | 76.7 | ZK27-6-2 | 808.8 | KY-11 | 44.5 | 24.7 | 156 | 38.2 | 115 | ZK27-6-2 | 809.5 | KY-12 | 185 | 712 | 19506 | 142 | 5470 | ZK27-6-2 | 811.2 | KY-13 | 1076 | 2657 | 95198 | 1589 | 9694 | ZK27-6-2 | 812.0 | KY-14 | 120 | 61.4 | 396 | 43.8 | 221 | ZK27-6-2 | 813.6 | KY-15 | 2035 | 125 | 573 | 68.6 | 49.9 | ZK27-6-2 | 819.0 | KY-16 | 2943 | 92.2 | 917 | 47.5 | 30.9 | ZK27-6-2 | 820.0 | KY-17 | 908 | 191 | 1211 | 156 | 63.4 | ZK27-6-2 | 820.5 | KY-18 | 103 | 59.8 | 124 | 28.2 | 92.3 | ZK31-4 | 821.0 | KY-19 | 169 | 128 | 2077 | 284 | 535 | ZK31-4 | 822.0 | KY-20 | 126 | 68.3 | 954 | 172 | 217 | ZK31-4 | 823.4 | KY-21 | 112 | 30.7 | 173 | 54.4 | 30.9 | ZK31-4 | 824.4 | KY-22 | 139 | 187 | 1543 | 279 | 1250 | ZK31-4 | 848.7 |
|
Content of trace elements in ore body and surrounding rock Xueliangou,Xiangyangxigou,Xiangyangdonggou ore block10-6
|
样品编号 | Ni | Zn | Mo | V | Cu | U | 取样位置 | 取样高程/m | 备注 | R0-5 | 160 | 450 | 84.5 | 235 | 226 | 562 | 露天采场 | 3562 | | 中长沟矿段[17] | R2-4 | 65.8 | 2730 | 41.6 | 325 | 43.7 | 5587 | 2中段 | 3522 | | R2-6 | 11982 | 188887 | 383 | 220 | 60.7 | 9010 | 2中段 | 3522 | | R2-7 | 2993 | 154632 | 38.4 | 288 | 33.3 | 10375 | 2中段 | 3522 | | R2-8 | 322 | 12117 | 21.9 | 137 | 17.2 | 379 | 2中段 | 3522 | | R3-1 | 116 | 1677 | 103 | 747 | 110 | 464 | 3中段 | 3482 | | R3-6 | 168 | 2065 | 133 | 612 | 289 | 18644 | 3中段 | 3482 | | R3-7 | 44.9 | 375 | 9.73 | 130 | 22.4 | 542 | 3中段 | 3482 | | R3-8 | 817 | 4717 | 12.5 | 1282 | 68 | 3792 | 3中段 | 3482 | | R4-1 | 916 | 9821 | 55.8 | 212 | 31.2 | 574 | 4中段 | 3442 | | R4-3 | 1926 | 7238 | 15.7 | 829 | 952 | 1006 | 4中段 | 3442 | | R4-4 | 1195 | 5142 | 14.7 | 379 | 65.7 | 398 | 4中段 | 3442 | | R4-5 | 469 | 11017 | 149 | 363 | 100 | 4860 | 4中段 | 3442 | | R4-6 | 357 | 6655 | 150 | 332 | 68.2 | 1206 | 4中段 | 3442 | | R4-7 | 579 | 21694 | 147 | 274 | 28.8 | 660 | 4中段 | 3442 | | R5-1 | 283 | 9760 | 49.6 | 502 | 28.8 | 19919 | 5中段 | 3402 | | R5-2 | 787 | 53979 | 152 | 612 | 37.1 | 30428 | 5中段 | 3402 | | R5-3 | 125 | 814 | 32 | 199 | 10.1 | 2280 | 5中段 | 3402 | | R5-4 | 166 | 1190 | 140 | 140 | 18.2 | 1032 | 5中段 | 3402 | | R6-3 | 109 | 1486 | 54.9 | 62.8 | 19.8 | 881 | 6中段 | 3362 | | R6-4 | 273 | 5679 | 60.4 | 95.8 | 27.7 | 631 | 6中段 | 3362 | | R7-2 | 833 | 34046 | 27.1 | 335 | 76.3 | 2483 | 7中段 | 3314 | | R7-3 | 181 | 4832 | 28 | 273 | 45.7 | 6092 | 7中段 | 3314 | | R7-4 | 290 | 2322 | 72.8 | 207 | 100 | 4272 | 7中段 | 3314 | | R7-6 | 63.4 | 932 | 71.5 | 110 | 64.3 | 453 | 7中段 | 3314 | | R7-7 | 102 | 1425 | 32.7 | 114 | 50.3 | 358 | 7中段 | 3314 | | R7-8 | 327 | 4564 | 403 | 255 | 35.9 | 4002 | 7中段 | 3314 | | R7-11 | 3207 | 28556 | 28.9 | 175 | 11.4 | 5501 | 7中段 | 3314 | | ZH10 | 600 | 10200 | 150 | 400 | 40 | 1270 | ZK111 | 3425 | | 天赞沟矿段[18] | ZH11 | 80 | 24400 | 1950 | 50 | 120 | 4340 | ZK111 | 3422.5 | | ZH12 | 120 | 700 | 20 | 400 | 40 | 550 | ZK111 | 3420 | | ZH13 | 300 | 6000 | 350 | 450 | 60 | 780 | ZK111 | 3418 | | ZH14 | 380 | 4200 | 30 | 300 | 40 | 1190 | ZK111 | 3388 | | ZH15 | 2400 | 23000 | 400 | 500 | 30 | 3810 | ZK111 | 3386 | | ZH16 | 2500 | 29000 | 700 | 350 | 180 | 6560 | ZK111 | 3383 | | ZH17 | 2700 | 84000 | 1200 | 1200 | 140 | 9490 | ZK111 | 3379 | | ZH18 | 2600 | 25000 | 220 | 800 | 280 | 2190 | ZK112 | 3272 | | YK-1 | 440 | 4960 | 60 | 570 | 100 | 1370 | ZK39 | 75 | | 垭口矿段[19] | YK-2 | 170 | 5140 | 30 | 1050 | 130 | 37.8 | ZK39 | 96 | | YK-3 | 340 | 1310 | 130 | 1540 | 550 | 1066 | ZK24 | 163 | | YK-4 | 240 | 2340 | 210 | 2740 | 220 | 39 | ZK24 | 166 | |
|
Content of trace elements in ore body and surrounding rock Zhongchanggou,Tianzangou,Yakou ore block 10-6
|
统计值 | Ni | Zn | Mo | V | Cu | U | 工业品位 | 200 | 3000 | 100 | 800 | 1000 | 500 | 平均值 | 949 | 18743 | 220 | 398 | 111 | 4502 | 均方差 | 1824 | 37157 | 392 | 324 | 176 | 6780 | 主元素与伴生元素平均值之比 | 4.74 | 0.24 | 20.46 | 11.31 | 40.56 | | 主元素与伴生元素均方差之比 | 3.72 | 0.18 | 17.30 | 20.93 | 38.52 | | 地壳元素丰度[21] | 89 | 94 | 1.3 | 140 | 63 | 1.7 | q值(平均值/地壳元素丰度) | 10.66 | 199.39 | 169.23 | 2.84 | 1.76 | 2648.24 |
|
Characteristic parameters of main elements and associated beneficial elements in ore of 510 uranium deposit10-6
|
伴生有益元素 | Ni | Zn | Mo | V | 赋存形式 | 镍的硫化矿物、多与 沥青铀矿共生 | 浸染状与沥青铀矿共生 | 矿物态 | 离子状态被吸附于水 白云母和有机碳中 | 主要矿物 | 主要为硫铁镍矿,次为 针镍矿、辉镍矿等 | 闪锌矿 | 以硫钼矿为主,少量辉 钼矿、钼钙矿 | 钒钙铀矿、水钒铜矿、 硫钒铜矿 | 矿物赋存形态 | 立方体或不规则粒状 | 球粒状、皮壳状、不规则粒状 | 粒状、脉状 | 离子状态 | 元素含量 | 0.004%~1.19% | 0.03%~18.8% | 0.001%~0.19% | 0.006%~0.13% | 可达综合利用的样品数量 | 50%以上 | 50%以上 | 40% | 12% |
|
Characteristics of associated beneficial elements in ore of 510 uranium deposit
|
8]) a—measuring point position and corresponding peak spectrum of zinc, nickel and other elements in the energy spectrum composition of uranium ore;b—the measuring point position and corresponding peak spectrogram of molybdenum, iron and other elements in the energy spectrum composition of uranium ore;c—measuring point position and corresponding peak spectrum of zinc and other elements in the energy spectrum composition of uranium ore;d—measuring point position and corresponding peak spectrogram of vanadium and other elements in energy spectrum composition of uranium ore ">
|
Energy spectrum composition of uranium and associated beneficial elements in 510 uranium deposit(modified from Chen T H,et al[8]) a—measuring point position and corresponding peak spectrum of zinc, nickel and other elements in the energy spectrum composition of uranium ore;b—the measuring point position and corresponding peak spectrogram of molybdenum, iron and other elements in the energy spectrum composition of uranium ore;c—measuring point position and corresponding peak spectrum of zinc and other elements in the energy spectrum composition of uranium ore;d—measuring point position and corresponding peak spectrogram of vanadium and other elements in energy spectrum composition of uranium ore
|
元素 | U | V | Ni | Zn | Mo | U | 1 | | | | | V | 0.258 | 1 | | | | Ni | 0.150 | 0.098 | 1 | | | Zn | 0.333 | 0.137 | 0.836 | 1 | | Mo | 0.103 | 0.176 | 0.208 | 0.333 | 1 |
|
Correlation analysis between uranium and associated beneficial elements
|
|
Correlation comparison of uranium and associated beneficial elements in each ore section of 510 uranium deposit
|
|
Vertical and horizontal zoning characteristics of uranium associated elements in 510 uranium deposit
|
|
Microscopic characteristics of uranium associated element minerals a—radiofascicular pyroxene;b—the pyrite nickel ore is metasomatized by radial fascicular needle nickel ore and pyroxene;c—chalcopyrite, galena and sphalerite lump;d—vein pitchblende coexists with sphalerite and pyrite;Py—pyrite; Cal—calcite; Sp—sphalerite; Ccp—chalcopyrite; Gn—galena; Po—polydymite;U—pitchblende
|
类型 | 分布区域 | 特征 | U-Mo、Ni、Zn、V型 | 矿床西段的深部 | 富U部位的伴生元素多数可达综合利用 | U-Mo、Ni、Zn型 | 矿床东段天赞沟深部 | Ni平均品位0.295%,Zn平均品位1.836%,Mo平均品位0.054%,含少量Cu元素 | U-Ni、Zn型 | 矿床中段向阳西沟—中长沟深部 | 镍、锌含量随铀含量的增大而增大,镍、锌与U密切共生,三者富集呈正相关 | U-Zn型 | 矿床中段浅部铀矿化区域,垭口深部区域 | 伴生元素多为矿化异常,浅部区域综合利用偏低 | U-Ni型 | 分布在矿床东西两端的浅部区域 | 多与黄铁矿、白铁矿形成矿物组合,多为氧化类型 | U-V型 | 少量出现在矿床西段的浅部区域 | 仅个别样品的伴生元素达到综合利用指标 |
|
Classification of uranium associated resources
|
[1] |
陈友良. 若尔盖地区碳硅泥岩型铀矿床成矿流体成因和成矿模式研究[D]. 成都: 成都理工大学, 2008.
|
[1] |
Chen Y L. The study on ore-forming fluid genesis and oreforming model of carbonaceous-siliceous-argillitic rock type uranium deposit in Zoige region[D]. Chengdu: Chengdu University of Technology, 2008.
|
[2] |
金有忠, 李庆阳. 西南铀矿地质志[R]. 中国核工业地质局, 2005.
|
[2] |
Jin Y Z, Li Q Y. Geological records of uranium deposits in Southwest China[R]. China Nuclear Industry Geological Bureau, 2005.
|
[3] |
陈友良. 西南地区铀资源现状与找矿前景展望[J]. 铀矿地质, 2004, 20(1):1-4.
|
[3] |
Chen Y L. Current status and prospecting vistas of uranium resources in southwest of China[J]. Uranium Geology, 2004, 20(1):1-4.
|
[4] |
张成江, 陈友良. 510-1铀矿床垂直分带规律的发现及其成因意义[J]. 地质与勘探, 2010, 46(3):434-441.
|
[4] |
Zhang C J, Chen Y L. Discovery of vertical zoning in the 510-1 uranium deposit and its geological implications[J]. Geology and Exploration, 2010, 46(3):434-441.
|
[5] |
毛裕年, 闵永明. 西秦岭硅灰泥岩型铀矿[M]. 北京: 地质出版社, 1989.
|
[5] |
Mao Y N, Min Y M. The siliceous-calcareous-argiliaceous rock type uranium deposite in Western Qinling[M]. Beijing: Geological Publishing House, 1989.
|
[6] |
张待时. 中国碳硅泥岩型铀矿床成矿规律探讨[J]. 铀矿地质, 1994, 10(4):207 -219.
|
[6] |
Zhang D S. Discussio on metallogenetic regularities of carbonate-siliceous-pelitic rock type uranium deposits in China[J]. Uranium Geology, 1994, 10(4):207 -219.
|
[7] |
何明友. 若尔盖铀成矿带构造—岩浆活化成因模式[D]. 成都: 成都理工学院, 1993.
|
[7] |
He M Y. Tectonomagmatic activation genetic model for Ruoergai uranium metallogenic zone[D] Chengdu: Chengdu Institute of Technology, 1993.
|
[8] |
陈田华, 张新民, 孙祥, 等. 四川若尔盖铀矿田510矿床成矿地质特征及找矿潜力分析[J]. 地质与勘探, 2021, 57(6):1341-1353.
|
[8] |
Chen T H, Zhang X M, Sun X, et al. Geological characteristics and prospecting Potential of the 510 deposit in the Ruo'ergai ore uranium field,Sichuan Province[J]. Geology and Exploration, 2021, 57(6):1341-1353.
|
[9] |
张玉龙, 朱西养. 甘肃南部碳硅泥岩型铀矿特征及找矿远景分析[J]. 铀矿地质, 2010, 26(1):1-3.
|
[9] |
Zhang Y L, Zhu X Y. Analysis on the metallogenic feature of carbonaceous siliceous argillitic uranium deposit and prospectingpotential in south Gansu[J]. Uranium Geology, 2010, 26(1):1-3.
|
[10] |
黄昌华, 张成江. 四川若尔盖铀矿田成矿地质条件[J]. 成都理工大学学报, 2015, 42(3):303 -311.
|
[10] |
Huang C H, Zhang C J. Geological setting of mineralization in Ruoergai uranium ore field,Sichuan,China[J]. Journal of Chengdu University of Technology, 2015, 42(3):303 -311.
|
[11] |
陈友良, 张成江, 朱西养, 等. 若尔盖地区碳硅泥岩型铀矿成矿地质环境与成矿作用[M]. 北京: 科学出版社, 2019:95-104.
|
[11] |
Chen Y L, Zhang C J, Zhu X Y, et al. Metallogenic geological environment andmineralization of carbonate siliceous mudstone type uranium depositin Ruoergai area[M]. Beijing: Science Press, 2019:95-104.
|
[12] |
金有忠, 田文浩. 若尔盖铀矿田成矿地质条件及资源潜力分析[J]. 中国地质, 2011, 38(3):681-691.
|
[12] |
Jin Y Z, Tian W H. An analysis of metallogenic conditions and resource of the Zoige uranium deposit[J]. Geology in China, 2011, 38(3):681 -691.
|
[13] |
王永飞. 若尔盖碳硅泥岩型铀矿成矿规律及控矿因素分析[J]. 中国地质调查, 2015, 2(8):17-24.
|
[13] |
Wang Y F. Metallogenic regularities and ore controlling factors of carbonaceous-siliceous-pelitic rock type uranium deposits inZoige[J]. Geological Survey of China, 2015, 2(8):17-24.
|
[14] |
常丹, 陈友良, 叶永钦. 若尔盖510-1铀矿床铀与成矿伴生元素的相关性探讨[J]. 矿物学报, 2013(S2):195.
|
[14] |
Chang D, Chen Y L, Ye Y Q. Discussion on the correlation between uranium and associated elements in Ruoergai 510-1 uranium deposit[J]. Acta Mineralogica Sinica, 2013(S2):195.
|
[15] |
叶永钦, 陈友良, 倪师军. 若尔盖地区510-1铀矿床脉石矿物微量元素垂直分带特征[J]. 铀矿地质, 2015, 31(5):510-516.
|
[15] |
Ye Y Q, Chen Y L, Ni S J. Vertical zoning characteristics of trace element in gangue mineral of uranium deposit 510-1 in Zoige[J]. Uranium Geology, 2015, 31(5):510-516.
|
[16] |
郑玉文, 陈友良, 常丹, 等. 若尔盖铀矿田510-1铀矿床稀土元素地球化学特征[J]. 四川冶金, 2019(6):13-18.
|
[16] |
Zheng Y W, Chen Y L, Chang D, et al. REE geochemical characteristics of the 510-1 uranium deposit in the Zoige uranium orefield[J]. Sichuan Metallurgy, 2019(6):13-18.
|
[17] |
叶永钦. 若尔盖铀矿田510-1铀矿床垂直分带特征研究[D]. 成都: 成都理工大学, 2014.
|
[17] |
Ye Y Q. Study on vertical zoning characteristics of 510-1 uranium deposit in Ruoergai uranium ore field[D]. Chengdu: Chengdu University of Technology, 2014.
|
[18] |
王永飞, 冯国丕, 张立军, 等. 四川省若尔盖县降扎铀矿床天赞沟地段(3 480 m标高以深)普查地质报告[R]. 四川省核工业地质调查院, 2012.
|
[18] |
Wang Y F, Feng G P, Zhang L J, et al. Geological survey report of tianzangou section of Jiangzha uranium deposit (3 480 m deep) in Ruoergai County, Sichuan Province[R]. Sichuan Institute of Nuclear Geology, 2012.
|
[19] |
李宝新, 张浒, 李宏涛, 等. 四川省若尔盖县降扎铀矿床垭口地段普查地质报告[R]. 四川省核工业地质调查院, 2012.
|
[19] |
Li B X, Zhang H, Li H T, et al. Geological survey report of Yakou section of Jiangzha uranium deposit in Ruoergai County, Sichuan Province[R]. Sichuan Institute of Nuclear Geology, 2012.
|
[20] |
何耀宗. 伴生元素赋存形式研究的几种数理统计方法[J]. 吉林大学学报:地球科学版, 1978(3):105-112.
|
[20] |
He Y Z. Several mathematical statistical methods for studying the occurrence forms of associated elements[J]. Journal of Jilin University: Earth Science Edition, 1978(3):105-112.
|
[21] |
黎彤. 化学元素的地球丰度[J]. 地球化学, 1976(3):167-174.
|
[21] |
Li T. Geochemical abundance of chemical elements[J]. Geochemistry, 1976(3):167-174
|
[22] |
李宝新, 李宏涛, 张浒, 等. 四川省若尔盖县降扎铀矿床中长沟地段(3 480 m标高以深)详查地质报告[R]. 四川省核工业地质调查院, 2012.
|
[22] |
Li B X, Li H T, Zhang H, et al. Detailed geological survey report on the Zhongchanggou section (3 480 m elevation and depth) of Jiangzha uranium deposit in Ruoergai County, Sichuan Province[R]. Sichuan Institute of Nuclear Geology, 2012.
|
[23] |
邢会敏, 刘艳, 陈刚, 等. 国外铀钼伴生矿综合回收技术[J]. 铀矿冶, 2006, 25(4):186-191.
|
[23] |
Xing H M, Liu Y, Chen G, et al. Multipuipose recovery techniques of uranium-molybdenum intergrown ores at abroad[J]. Uranium Mining and Metallurgy, 2006, 25 (4): 186-191.
|
[24] |
王洪明, 孟晋, 康绍辉, 等. 铀钼伴生矿的强化堆浸研究[J]. 铀矿冶, 2003, 22(3):122-125.
|
[24] |
Wang H M, Meng J, Kang S H, et al. Research on the intensified heap leaching of coexisted molybdenum uranium ore[J]. Uranium Mining and Metallurgy, 2003, 22(3):122-125.
|
[25] |
刘康, 杨志平, 刘永涛, 等. 某铀钼伴生矿赋存状态与浸出性能研究[J]. 铀矿冶, 2017, 36(2):93-98.
|
[25] |
Liu K, Yang Z P, Liu Y T, et al. Study on occurrence modes and leaching performance of a uranium-molybdenum associated ore[J]. Uranium Mining and Metallurgy, 2017, 36(2):93-98.
|
[1] |
WAN Tai-Ping, ZHANG Li, LIU Han-Liang. Regional geochemical characteristics and metallogenic prospect area prediction of strategic mineral antimony in the Eerguna block, Heilongjiang Province, China[J]. Geophysical and Geochemical Exploration, 2023, 47(5): 1179-1188. |
[2] |
YUAN Yu-Ting, LIU Xue-Min, WANG Xue-Qiu, TAN Qin-Ping. Sulfur-lead isotopes based tracing of the metal element anomalies identified in the total metal measurement of surface fine-grained soils: A case study of the Shuiyindong Carlin-type concealed gold deposit[J]. Geophysical and Geochemical Exploration, 2023, 47(4): 1083-1097. |
|
|
|
|