|
|
Definition of full-field apparent resistivity of controlled source magnetotellurics based on inverse function principle |
QIN Xi-She1( ), MA Jie2,3, GUO Wen-Bo1,4, QI Zhi-Peng1,2,3( ), CAO Hua-Ke2,3 |
1. Northwest Nonferrous Metals Mining and Geological Exploration Group Co., Ltd. for Nonferrous Metals, Xi'an 710051, China 2. College of Geological Engineering and Geomatics, Chang'an University, Xi'an 710054, China 3. Integrated Geophysical Simulation Lab (Key Laboratory of Chinese Geophysics Society ), Xi'an 710054, China 4. Xi'an Geophysical and Geochemical Exploration Corporation, Bureau of Geological Exploration for Nonferrous Metals in Northwest China, Xi'an 710068,China |
|
|
Abstract With the development of the wide-field electromagnetic method, the scope of data collection has been gradually expanded. To avoid the none-far-field resistivity distortion, this paper proposes a definition method suitable for the full-field apparent resistivity of the controlled-source electromagnetic method based on the inverse function principle. With this method, the full-field apparent resistivity can be calculated using a single component or multiple components. The full-field apparent resistivity of a homogeneous half-space model and a layered model was calculated using individual components of electric and magnetic fields and their ratios. The results show that the definition method proposed in this paper can achieve the definition of frequency-domain apparent resistivity that is not limited by space and thus can better reflect the resistivity distribution of underground media.
|
Received: 17 August 2020
Published: 28 June 2022
|
|
Corresponding Authors:
QI Zhi-Peng
E-mail: qinxsh@nwme.com.cn;qzhipeng@126.com
|
|
|
|
|
Characteristic of Ex component in frequency domain about resistivity
|
|
Characteristic of Hy component in frequency domain about resistivity
|
|
Characteristic of Zxy component in frequency domain about resistivity
|
|
Different offset half-space apparent resistivity calculations based on Cagniard apparent resistivity
|
|
Apparent resistivity for different offsets in half space based on the inverse function principle
|
|
The apparent resistivity characteristics defined by each component of the two-layer model when the offset is 200 meters
|
|
The apparent resistivity characteristics defined by each component of the two-layer model when the offset is 1 000 meters
|
|
The apparent resistivity characteristics defined by each component of the two-layer model when the offset is 5 000 meters
|
|
The apparent resistivity characteristics defined by each component of the H-type model when the offset is 500 meters
|
|
The apparent resistivity characteristics defined by each component of the H-type model when the offset is 1 000 meters
|
|
The apparent resistivity characteristics defined by each component of the H-type model when the offset is 5 000 meters
|
|
The apparent resistivity characteristics defined by each component of the K-type model when the offset is 200 meters
|
|
The apparent resistivity characteristics defined by each component of the K-type model when the offset is 500 meters
|
|
The apparent resistivity characteristics defined by each component of the K-type model when the offset is 1 000 meters
|
|
The apparent resistivity characteristics defined by each component of the H-type model with layer thickness changes
|
|
The apparent resistivity characteristics defined by each component of the K-type model with layer thickness changes
|
[1] |
Goldstein M A, Strangway D W. Audio frequency magnetotellurics with a ground dipole source[J]. Geophysics, 1975, 40(4): 669-683.
|
[2] |
欧阳涛, 底青云, 安志国, 等. CSAMT法在某铁路隧道勘察中的应用研究[J]. 地球物理学进展, 2016, 31(3):1351-1357.
|
[2] |
Ouyang T, Di Q Y, An Z G, et al. Research on the application of CSAMT method in a railway tunnel survey[J]. Progress in Geophysics, 2016, 31(3): 1351-1357.
|
[3] |
陈玉玲, 韩凯, 陈贻祥, 等. 可控源音频大地电磁法在岩溶塌陷勘察中的应用[J]. 地球物理学进展, 2015, 30(6):2616-2622.
|
[3] |
Chen Y L, Han K, Chen Y X, et al. Application of controllable source audio magnetotelluric method in karst collapse survey[J]. Progress in Geophysics, 2015, 30(6): 2616-2622.
|
[4] |
薛融晖, 安志国, 王显祥, 等. 利用电磁方法探测内蒙古塔木素高放废物预选场址岩体的内部构造[J]. 地球物理学报, 2016, 59(6):2316-2325.
|
[4] |
Xue R H, An Z G, Wang X X, et al. Using electromagnetic method to detect the internal structure of the rock mass at the high level radioactive waste pre-selected site in Inner Mongolia[J]. Journal of Geophysics, 2016, 59 (6):2316-2325.
|
[5] |
李帝铨, 汪振兴, 胡艳芳, 等. 广域电磁法在武陵山区页岩气勘探中的探索应用——以黔北桐梓地区为例[J]. 物探与化探, 2020, 44(5):991-998.
|
[5] |
Li D Q, Wang Z X, Hu Y F, et al. The application of wide field electromagnetic method to shale gas exploration in Wuling Mountain area: A case study of Tongzi area in northern Guizhou[J]. Geophysical and Geochemical Exploration, 2020, 44(5):991-998.
|
[6] |
孙求实, 袁杰, 宗文明, 等. 广域电磁法在辽西地区牛营子凹陷油气资源潜力评价中的应用[J]. 物探与化探, 2019, 43(1):64-69.
|
[6] |
Sun Q S, Yuan J, Zong W M, et al. The application of wide field electromagnetic method to the oil and gas exploration of Niuyingzi sag in Liaoxi area[J]. Geophysical and Geochemical Exploration, 2019, 43(1):64-69.
|
[7] |
何继善. 广域电磁法理论及应用研究的新进展[J]. 物探与化探, 2020, 44(5):585-590.
|
[7] |
He J S. New research progress in theory and application of wide field electromagnetic method[J]. Geophysical and Geochemical Exploration, 2020, 44(5):585-590.
|
[8] |
曹昌祺. 水平分层大地的交流视电阻率[J]. 地球物理学报, 1978, 21(3):248-261.
|
[8] |
Cao C Q. AC apparent resistance of horizontal layered earth[J]. Journal of Geophysics, 1978, 21(3): 248-261.
|
[9] |
Spies B R, Eggers D E. The use and misuse of apparent resistivity in electromagnetic methods[J]. Geophysics, 1986, 51(7): 1462-1471.
|
[10] |
殷长春, 朴化荣. 电磁测深法视电阻率定义问题的研究[J]. 物探与化探, 1991, 15(4):290-299.
|
[10] |
Yin C C, Piao H R. Study on the definition of apparent resistivity by electromagnetic sounding[J]. Geophysical and Geochemical Exploration, 1991, 15(4): 290-299.
|
[11] |
方文藻, 李貅, 李予国, 等. 频率域电磁法中视电阻率全区定义[J]. 西安地质学院学报, 1992, 14(4):81-86.
|
[11] |
Fang W Z, Li X, Li Y G, et al. Regional definition of apparent resistivity in frequency domain electromagnetic method[J]. Journal of Xi’an Institute of Geosciences, 1992, 14(4): 81-86.
|
[12] |
汤井田, 何继善. 水平电偶源频率测深中全区视电阻率定义的新方法[J]. 地球物理学报, 1994, 37(4):543-552.
|
[12] |
Tang J T, He J S. New method for defining the whole-area apparent resistivity in horizontal electric dipole frequency sounding[J]. Journal of Geophysics, 1994, 37(4): 543-552.
|
[13] |
汤井田, 周聪, 张林成. CSAMT电场y方向视电阻率的定义及研究[J]. 吉林大学学报:地球科学版, 2011, 41(2):552-558.
|
[13] |
Tang J T, Zhou C, Zhang L C. Definition and study of csamt electric field y direction apparent resistivity[J]. Journal of Jilin University:Geosciences, 2011, 41(2): 552-558.
|
[14] |
汤井田, 何继善. 可控源音频大地电磁法及其应用[M]. 长沙: 中南大学出版社, 2005.
|
[14] |
Tang J T, He J S. Controllable source audio magnetotelluric method and its application[M]. Changsha: Central South University Press, 2005.
|
[15] |
底青云, 王若, 王妙月. 可控源音频大地电磁数据正反演及方法应用[M]. 北京: 科学出版社, 2008.
|
[15] |
Di Q Y, Wang R, Wang M Y. Forward inversion and application of controllable source audio magnetotelluric data[M]. Beijing: Science Press, 2008.
|
[16] |
底青云, 王妙月, 付长民, 等. “地-电离层”模式电磁波传播特征研究[M]. 北京: 科学出版社, 2013.
|
[16] |
Di Q Y, Wang M Y, Fu C M, et al. Study on electromagnetic wave propagation characteristics of earth-ionosphere model[M]. Beijing: Science Press, 2013.
|
[17] |
栾晓东, 底青云, 雷达. 基于牛顿迭代法和遗传算法的CSAMT近场校正[J]. 地球物理学报, 2018, 61(10):4148-4159.
|
[17] |
Luan X D, Di Q Y, Lei D. CSAMT near field correction based on Newton iterative method and genetic algorithm[J]. Journal of Geophysics, 2018, 61(10): 4148-4159.
|
[18] |
毛先进, 鲍光淑. 水平电偶源频率域电磁测深全区视电阻率的直接算法[J]. 中南工业大学学报, 1996, 27(3):253-256.
|
[18] |
Mao X J, Bao G S. Direct algorithm for electromagnetic sounding of all-region visual resistivity in horizontal electric power source frequency domain[J]. Journal of Central South Polytechnic University, 1996, 27(3): 253-256.
|
[19] |
佟铁钢, 柳建新. 一种新型CSAMT观测参数的计算方法[J]. 物探化探计算技术, 2009, 31(3):210-212.
|
[19] |
Tong T G, Liu J X. A new calculation method of CSAMT observation parameters[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2009, 31(3): 210-212.
|
[20] |
韩自强, 冯兵, 陈红, 等. 电性双极源频率域全区视电阻率的计算及应用效果研究[J]. 地球物理学进展, 2016, 31(4):1575-1582.
|
[20] |
Han Z Q, Feng B, Chen H, et al. Calculation and application of apparent resistivity in electrical bipolar frequency domain[J]. Progress in Geophysics, 2016, 31(4):1575-1582.
|
[21] |
何继善. 广域电磁测深法研究[J]. 中南大学学报:自然科学版, 2010, 41(3):1065-1072.
|
[21] |
He J S. Wide-area electromagnetic sounding[J]. Journal of Central South University:Natural Science Edition, 2010, 41(3): 1065-1072.
|
[22] |
何继善, 薛国强. 短偏移距电磁探测技术概述[J]. 地球物理学报, 2018, 61(1):1-8.
|
[22] |
He J S, Xue G Q. Review of the key techniques on short-offset electromagnetic detection[J]. Chinese Journal of Geophysics, 2018, 61(1): 1-8.
|
[1] |
ZHAO Bao-Feng, WANG Qi-Nian, GUO Xin, GUAN Da-Wei, CHEN Tong-Gang, FANG Wen. Gravity survey and audio magnetotellurics-based insights into the deep structures and geothermal resource potential of the Rucheng Basin[J]. Geophysical and Geochemical Exploration, 2023, 47(5): 1147-1156. |
[2] |
HE Sheng, WANG Wan-Ping, DONG Gao-Feng, NAN Xiu-Jia, WEI Feng-Feng, BAI Yong-Yong. Application of the opposing-coils transient electromagnetic method in urban geological surveys[J]. Geophysical and Geochemical Exploration, 2023, 47(5): 1379-1386. |
|
|
|
|