|
|
Parameter optimization and imaging of visco-acoustic media using high-order Fourier finite-difference method |
XIAO Shi-Peng( ), XIONG Gao-Jun, YUAN Meng-Yu, MAO Ming-Qiu, WANG Sheng-Yi, WEI Zeng-Tao |
College of Geophysics, Chengdu University of Technology, Chengdu 610000,China |
|
|
Abstract The numerical simulation of visco-acoustic media using the high-order Fourier finite-difference method can reflect the seismic response of high-dip strata with geo-absorption effects more accurately.It can adapt to any lateral speed changes and suppress the dispersion and background noise at large dip angles caused by the finite-difference method.The migration precision of the high-dip strata depends on the determination of the constant coefficient of the difference operator and the calculation of the order.In this study,the gradient descent method was used to optimize the high-order finite-difference correction item in the Fourier finite-difference operator.According to the optimization results of the relative errors and constraint coefficients,the approximation effects of higher-order equations were achieved without increasing the order of the equation and then were expanded to viscoelastic media.Using the designed model,it can be concluded that the proposed method is applicable to the forward simulation of the strong spatial variable speed media with absorption and attenuation effects and has high calculation accuracy and efficiency.Accurate seismic numerical simulation of complex geological structures further confirmed the effectiveness of this method.
|
Received: 11 August 2021
Published: 03 January 2023
|
|
|
|
|
|
Kelvin model
|
N | an | bn | cn | dn | N=1 | 0.4078 | 0.4877 | 0.2539 | 0.1519 | N=2 | 0.3522 | -0.6803 | -0.0696 | 0.0942 | | 0.2400 | 0.7290 | -0.0605 | 0.2647 |
|
Coefficient optimization
|
|
Relative error changes with propagation angle (p=c/v=0.5)
|
|
Point diffraction model a—point diffraction model;b—forward results of fourth-order optimized;c—phase shift method forward;d—comparison of different Q values
|
|
Layered model a—velocity model of viscoclastic media;b—parameter optimization forward results;c—migration results;d—migration results of fourthorder optimized
|
|
Marmousi model imaging by different mothods a—Marmousi velocity model;b—second-order FFD forward(Q=∞);c—second-order optimized FFD forward(Q=∞);d—fourth-order optimized FFD forward(Q=∞);e—fourth-order optimized FFD forward(changing Q value)
|
[1] |
俞寿朋. 高分辨率地震勘探[M]. 北京: 石油工业出版社,1993.
|
[1] |
Yu S P. High resolution seismic exploration[M]. Beijing: Petroleum Industry Press,1993.
|
[2] |
李庆忠. 走向精确勘探的道路[M]. 北京: 石油工业出版社,1994.
|
[2] |
Li Q Z. The road to accurate exploration[M]. Beijing: Petroleum Industry Press,1994.
|
[3] |
陈树民, 刘礼农, 张剑峰, 等. 一种补偿介质吸收叠前时间偏移技术[J]. 石油物探, 2018, 57(4):576-583.
|
[3] |
Chen S M, Liu L N, Zhang J F, et al. A deabsorption prestack time migration technology[J]. Petroleum Geophysical Prospecting, 2018, 57(4):576-583.
|
[4] |
徐凯, 孙赞东. 基于粘声衰减补偿的最小二乘逆时偏移[J]. 石油物探, 2018, 57(3):419-427.
|
[4] |
Xu K, Sun Z D. Least-squares reverse time migration based on visco-acoustic attenuation compensation[J]. Geophysical Prospecting for Petroleum, 2018, 57(3):419-427.
|
[5] |
冀国强, 石颖. 正则化形式的稳定粘声逆时偏移成像方法[J]. 石油物探, 2020, 59(3):374-381.
|
[5] |
Ji G Q, Shi Y. Stable and regularized visco-acoustic reverse time migration[J]. Geophysical Prospecting for Petroleum, 2020, 59(3):374-381.
|
[6] |
周斯琛. 频率域粘声介质全波形反演方法研究[D]. 青岛: 中国石油大学(华东), 2017.
|
[6] |
Zhou S C. The research on frequency domain visco-acoustic full waveform insersion[D]. Qingdao: China University of Petroleum (East China), 2017.
|
[7] |
廖建平, 王华忠, 刘和秀, 等. 精确的频率空间域黏声波有限差分数值模拟[J]. 物探与化探, 2011, 35(4):541-545.
|
[7] |
Liao J P, Wang H Z, Liu H X, et al. Accurate visco-acoustic wave finite difference numerical simulation in frequency space domain[J]. Geophysical and Geochemical Exploration, 2011, 35(4):541-545.
|
[8] |
Stolt R H. Migration by fourier transform[J]. Geophyscis, 2012, 43(1): 23-48.
|
[9] |
牛滨华, 孙春岩. 半无限空间各向同性黏弹性介质与地震波传播[M]. 北京: 地质出版社, 2007.
|
[9] |
Niu B H, Sun C Y. Half-space homogeneous isotropic viscoelastic medium and seismic wave propagation[M]. Beijing: Geological Publishing House, 2007.
|
[10] |
李金丽, 李振春, 管路平, 等. 地震波衰减及补偿方法[J]. 物探与化探, 2015, 39(3):456-465.
|
[10] |
Li J L, Li Z C, Guan L P, et al. The method of seismic attenuation and energy compensation[J]. Geophysical and Geochemical Exploration, 2015, 39(3):456-465.
|
[11] |
邓文志, 李振春, 王延光, 等. 基于稳定逆时传播算子的黏声介质最小二乘逆时偏移[J]. 物探与化探, 2015, 39(4):791-796.
|
[11] |
Deng W Z, Li Z C, Wang Y G, et al. The least-squares reverse time migration for visco-acoustic medium based on a stable reverse-time propagator[J]. Geophysical and Geochemical Exploration, 2015, 39(4):791-796.
|
[12] |
李金丽, 曲英铭, 刘建勋, 等. 三维黏声最小二乘逆时偏移方法研究[J]. 物探与化探, 2018, 42(5):1013-1025.
|
[12] |
Li J L, Qu Y M, Liu J X, et al. A model study of three-dimensional viscoacoustic least-squares reverse time migration[J]. Geophysical and Geochemical Exploration, 2018, 42(5):1013-1025.
|
[13] |
赵连锋. 井间地震波速与衰减联合层析成像方法研究[D]. 成都: 成都理工大学, 2002.
|
[13] |
Zhao L F. Study on crosswell seismic tomography combing velocity and attenuation[D]. Chengdu: Chengdu University of Technology, 2002.
|
[14] |
贺振华, 赵宪生, 陈琴芳. 地震记录的快速f-k正演模拟[J]. 石油地球物理勘探, 1992, 27(3):336-342.
|
[14] |
He Z H, Zhao X S, Chen Q F. Fast f-k forward modeling of seismic data[J]. Oil Geophysical Prospecting, 1992, 27(3):336-342.
|
[15] |
张金海, 王卫民, 赵连锋, 等. 黏声波介质傅里叶有限差分法正演模拟[J]. 石油地球物理勘探, 2008, 43(2):174-178.
|
[15] |
Zhang J H, Wang W M, Zhao L F, et al. Fourier finite-different forward modeling in viscoacoustic media[J]. Oil Geophysical Prospecting, 2008, 43(2):174-178.
|
[16] |
Stoffa P L, Fokkema J T, de Luna Freire R M, et al. Split-step Fourier migration[J]. Geophysics, 1990, 55(4):410-421.
|
[17] |
Ristow D, Rühl T. Fourier finite-difference migration[J]. Geophysics, 1994, 59(12):1882-1893.
|
[18] |
邓巧琳. 地震波在反射与透射影响下的能量衰减分析[D]. 长沙: 湖南大学, 2013.
|
[18] |
Deng Q L. Derivation of reflection and transmission coefficient of seismic waves in viscoelastic media[D]. Changsha: Hunan University, 2013.
|
[19] |
Jo C H, Shin C, Suh J H. An optimal 9-point finite-difference frequency-space 2-D scalar wave extrapolator[J]. Geophysics, 1996, 61(2):529-537.
|
[20] |
马在田. 高阶有限差分偏移[J]. 石油地球物理勘探, 1982, 17(1):6-15.
|
[20] |
Ma Z T. The finite-difference migration of higher-order equation[J]. Oil Geophysical Prospecting, 1982, 17(1):6-15.
|
[21] |
王华忠, 马在田, 曹景忠. 优化系数傍轴近似方程三维一步法偏移[J]. 石油地球物理勘探, 1998, 33(2):170-184.
|
[21] |
Wang H Z, Ma Z T, Cao J Z. Three dimensional one-pass migration using paraxial approximate equation with optimized coefficients[J]. Oil Geophysical Prospecting, 1998, 33(2):170-184.
|
[22] |
Liu L N, Zhang J F. 3D wavefield extrapolation with optimum split-step Fourier method[J]. Society of Exploration Geophysicists, 2006, 71(3):95-108.
|
[23] |
Lee M W, Suh S Y. Optimization of one-way wave equations[J]. Geophysics, 1985, 50(10):1634-1637.
|
[24] |
Kadalbajoo M K, Awasthi A. Crank-Nicolson finite difference method based on a midpoint upwind scheme on a non-uniform mesh for time-dependent singularly perturbed convection-diffusion equations[J]. International Journal of Computer Mathematics, 2008, 85(5):771-790.
|
[25] |
Claerbout J F. Imaging the earth’s interior[J]. Geophysical Journal International, 1986, 86(1):217.
|
[26] |
Li Z M, Liu C L. An ideal depth extrapolation of two-dimensional seismic wave field[J]. Oil Geophysical Prospecting, 1990, 25(5):517-528.
|
[1] |
XI Yu-He, WANG Hong-Hua, WANG Yu-Cheng, WU Qi-Ming. Application of the minimum entropy method based on a velocity-controlled moving window to the reverse time migration of ground-penetrating radars[J]. Geophysical and Geochemical Exploration, 2023, 47(5): 1250-1260. |
[2] |
ZHAO Yu-Yan, JIANG Tao, YANG Bing-Han, ZHANG Ze-Yu, LI Zheng-He, LI Bing, TANG Xiao-Dan. Migration and enrichment patterns of vanadium in the soil and plant system of farmland[J]. Geophysical and Geochemical Exploration, 2023, 47(3): 835-844. |
|
|
|
|