|
|
Geochemical classification of the soil in a typical black soil area using the principal component analysis combined with K-means clustering algorithm |
LIU Kai1,2,3( ), DAI Hui-Min1,2,3, LIU Guo-Dong1,2,3, SONG Yun-Hong1,2,3, LIANG Shuai1,2,3( ), YANG Ze1,2,3 |
1. Shenyang Center of China Geological Survey, Shenyang 110034, China 2. Key Laboratory of Black Soil Evolution and Ecological Effect, Ministry of Natural Resources, Shenyang 110034, China 3. Key Laboratory of Black Soil Evolution and Ecological Effect, Liaoning Province, Shenyang 110034, China |
|
|
Abstract The geochemical classification of soils is significant for agricultural and ecological regionalization. Based on the data on major elements in soil obtained from the multi-purpose regional geochemical survey, this study conducted the geochemical classification for a typical black soil area in northeast China using the principal component analysis combined with the K-means clustering algorithm (also referred to as the principal component clustering method). The results are as follows. The soil parent materials are the main factor controlling the characteristics of major elements in the soil. It is the most appropriate to divide the soil samples from the typical black soil area into five categories using the principal component clustering method. Various samples had significantly different major element contents (P<0.05). The geochemical classification results corresponded to the Quaternary geological units to a certain degree and can better reflect the actual distribution of soil parent materials. Moreover, the high SiO2 content in the black soil area in the southern Songhua River indicates desertification, to which much attention should be paid in the protection of the black soil.
|
Received: 31 January 2022
Published: 03 January 2023
|
|
Corresponding Authors:
LIANG Shuai
E-mail: liu.kai@mail.cgs.gov.cn;ls476476@163.com
|
|
|
|
|
Regional location(a) and soil type distribution(b) of the study area
|
|
Correlation coefficient matrix diagram
|
类型 | 元素 | 最小值/% | 最大值/% | 平均值/% | 中位数/% | 标准偏差/% | 偏度 | 峰度 | 变异系数 | 表层土壤 | SiO2 | 41.87 | 80.46 | 64.55 | 64.80 | 2.95 | -0.67 | 2.87 | 0.05 | Al2O3 | 7.88 | 16.62 | 13.95 | 13.98 | 0.78 | -0.59 | 2.95 | 0.06 | Fe2O3 | 0.95 | 10.49 | 4.77 | 4.76 | 0.62 | 0.08 | 4.67 | 0.13 | K2O | 1.72 | 3.98 | 2.50 | 2.50 | 0.15 | 0.63 | 4.31 | 0.06 | Na2O | 0.72 | 4.66 | 1.62 | 1.56 | 0.29 | 1.82 | 6.44 | 0.18 | CaO | 0.55 | 15.03 | 1.56 | 1.39 | 0.82 | 6.25 | 57.76 | 0.53 | MgO | 0.21 | 3.50 | 1.29 | 1.30 | 0.21 | 0.24 | 3.21 | 0.17 | 深层土壤 | SiO2 | 44.67 | 75.41 | 64.34 | 64.66 | 2.51 | -0.36 | 3.10 | 0.04 | Al2O3 | 9.01 | 18.50 | 14.79 | 14.89 | 0.80 | -0.80 | 3.61 | 0.05 | Fe2O3 | 1.38 | 9.08 | 5.12 | 5.16 | 0.78 | -0.27 | 2.58 | 0.15 | K2O | 1.61 | 3.68 | 2.62 | 2.63 | 0.17 | 0.30 | 4.69 | 0.06 | Na2O | 0.53 | 3.66 | 1.67 | 1.64 | 0.28 | 1.38 | 5.60 | 0.17 | CaO | 0.35 | 15.41 | 1.41 | 1.25 | 0.66 | 4.30 | 28.73 | 0.47 | MgO | 0.36 | 3.09 | 1.37 | 1.40 | 0.24 | -0.37 | 2.92 | 0.17 |
|
Statistical table of major elements in black soil area
|
|
Box diagram of enrichment coefficient of major elements
|
|
Spatial distribution of major elements in black soil area of Northeast China(interval value of element content is quartile and data unit is %)
|
主成分 | 初始特征值 | 提取载荷平方和 | 总计 | 方差百 分比 | 累积贡 献率/% | 总计 | 方差百 分比 | 累积贡 献率/% | PC1 | 3.270 | 46.708 | 46.708 | 3.270 | 46.708 | 46.708 | PC2 | 1.474 | 21.056 | 67.764 | 1.474 | 21.056 | 67.764 | PC3 | 1.070 | 15.289 | 83.053 | 1.070 | 15.289 | 83.053 |
|
Principal component characteristics and variance contributions
|
|
Principal component analysis score diagram
|
|
Mean silhouette coefficients of different classification numbers
|
类别 | 样品数 | SiO2 | Al2O3 | Fe2O3 | CaO | K2O | MgO | Na2O | I类 | 18 | 56.15 | 14.37 | 6.16 | 3.06 | 2.90 | 3.63 | 2.19 | II类 | 6512 | 64.66 | 13.59 | 4.87 | 1.26 | 2.39 | 1.21 | 1.45 | III类 | 10023 | 63.07 | 14.46 | 5.19 | 1.57 | 2.50 | 1.45 | 1.54 | IV类 | 778 | 59.24 | 12.86 | 4.39 | 5.04 | 2.35 | 1.70 | 1.66 | V类 | 5557 | 66.75 | 13.51 | 4.24 | 1.38 | 2.65 | 1.18 | 1.94 |
|
Statistical table of mean values of major elements in various classifications%
|
|
Spatial distribution map of sample categories
|
|
Quaternary geological map of typical black soil area
|
|
Cumulative frequency map of geological units in different classifications
|
[1] |
李括, 彭敏, 赵传冬, 等. 全国土地质量地球化学调查二十年[J]. 地学前缘, 2019, 26(6):128-158.
|
[1] |
Li K, Peng M, Zhao C D, et al. Vicennial implementation of geochemical survey of land quality in China[J]. Earth Science Frontiers, 2019, 26(6):128-158.
|
[2] |
戴慧敏, 赵君, 刘国栋, 等. 东北黑土地质量调查成果[J]. 地质与资源, 2020, 29(3):299.
|
[2] |
Dai H M, Zhao J, Liu G D, et al. Progress in the quality survey of black soil in northeast China[J]. Geology and Resources, 2020, 29(3):299.
|
[3] |
戴慧敏, 刘驰, 宫传东, 等. 东北平原土壤碳库构成及其与土壤性质的关系[J]. 第四纪研究, 2013, 33(5):986-994.
|
[3] |
Dai H M, Liu C, Gong C D, et al. Soil carbon pool in northeast plain of China and its relations between the soil properties[J]. Quaternary Sciences, 2013, 33(5):986-994.
|
[4] |
刘国栋, 戴慧敏, 杨泽, 等. 三江平原土壤碳库时空变化和影响因素研究[J]. 现代地质, 2021, 35(2):443-454.
|
[4] |
Liu G D, Dai H M, Yang Z, et al. Temporal and spatial changes of soil carbon pool and its influencing factors in the Sanjiang Plain[J]. Geoscience, 2021, 35(2):443-454.
|
[5] |
刘国栋, 李禄军, 戴慧敏, 等. 松辽平原土壤碳库变化及其原因分析[J]. 物探与化探, 2021, 45(5):1109-1120.
|
[5] |
Liu G D, Li L J, Dai H M, et al. Change in soil carbon pool in Sonlgiao Plain and its cause analysis[J]. Geophysical and Geochemical Exploration, 2021, 45(5):1109-1120.
|
[6] |
刘国栋, 杨泽, 戴慧敏, 等. 黑龙江省海伦市长发镇土地质量地球化学评价及开发建议[J]. 地质与资源, 2020, 29(6):533-542.
|
[6] |
Liu G D, Yang Z, Dai H M, et al. Geochemical evaluation of land quality and development suggestion of land in Hailun city,Heilongjiang Province[J]. Geology and Resources, 2020, 29(6):533-542.
|
[7] |
刘凯, 杜守营, 戴慧敏, 等. 黑龙江省五常市东部土壤中硒分布及影响因素[J]. 地质与资源, 2020, 29(6):597-602.
|
[7] |
Liu K, Du S Y, Dai H M, et al. Selenium distribution and influencing factors of soil in eastern Wuchang City,Heilongjiang Province[J]. Geology and Resources, 2020, 29(6):597-602.
|
[8] |
宋运红, 张哲寰, 杨凤超, 等. 黑龙江海伦地区垦殖前后典型黑土剖面主要养分元素垂直分布特征[J]. 地质与资源, 2020, 29(6):543-549.
|
[8] |
Song Y H, Zhang Z H, Yang F C, et al. Vertical distribution of major nutrient elements in typical black soil sections in Hailun,Heilongjiang Province:Before and after reclamation[J]. Geology and Resources, 2020, 29(6):543-549.
|
[9] |
李国刚, 胡邦琦, 李军, 等. 山东半岛沿岸海域表层沉积物的常量元素及其地质意义[J]. 海洋地质与第四纪地质, 2012, 32(3):45-54.
|
[9] |
Li G G, Hu B Q, Li J, et al. Geochemistry of major elements in the surface sediments of the offshore area of Shandong Peninsula and its geological implications[J]. Marine Geology and Quaternary Geology, 2012, 32(3):45-54.
|
[10] |
Kumaravel V, Sangode S J, Siddaiah N S, et al. Major element geochemical variations in a Miocene-Pliocene Siwalik paleosol sequence:Implications to soil forming processes in the Himalayan foreland basin[J]. Journal of the Geological Society of India, 2009, 73(6):759-772.
|
[11] |
Du J, Luo Y, Zhang W, et al. Major element geochemistry of purple soils/rocks in the red Sichuan Basin,China:Implications of their diagenesis and pedogenesis[J]. Environmental Earth Sciences, 2013, 69(6):1831-1844.
|
[12] |
Veronica M N J, Georgesivc E E. A comparative analyses of granulometry,mineral composition and major and trace element concentrations in soils commonly ingested by humans[J]. International Journal of Environmental Research and Public Health, 2015, 12(8):8933-8955.
|
[13] |
Aldis M, Aherne J. Exploratory analysis of geochemical data and inference of soil minerals at sites across Canada[J]. Mathematical Geosciences, 2021, 53:1201-1221.
|
[14] |
Hossein T, Farhad K, Arash A, et al. Geochemistry of soils derived from selected sedimentary parent rocks in Kopet Dagh,North East Iran[J]. Journal of Geochemical Exploration, 2018, 194:52-70.
|
[15] |
Hassan T, Ute M, Raimon T D, et al. Surficial and deep earth material prediction from geochemical compositions[J]. Natural Resources Research, 2018, 28:869-892.
|
[16] |
Wang J, Zuo R G, Caers J. Discovering geochemical patterns by factor-based cluster analysis[J]. Journal of Geochemical Exploration, 2017, 81:106-115.
|
[17] |
Jan S, Radim V, Jarmilac, et al. Regional geochemical zonation of cultivated floodplains-Application of multi-element associations for soil quality evaluation along the Ohǐe (Eger) River,Czech Republic[J]. Journal of Geochemical Exploration, 2020, 212:106491.
|
[18] |
陈加兵, 曾从盛. 主成分分析、聚类分析在土地评价中的应用——以福建沙县夏茂镇水稻土为主要评价对象[J]. 土壤, 2001, 33(5):243-246,256.
|
[18] |
Chen J B, Zeng C S. Application of principle component analysis and hierarchical cluster analysis in land evaluation[J]. Soil, 2001, 13(5):243-246,256.
|
[19] |
王同兴, 郭骏杰, 王强. 基于K均值动态聚类分析的土样识别[J]. 建筑科学, 2010, 26(7):52-56,71.
|
[19] |
Wang T X, Guo J J, Wang Q. The recognition of soil sample based on the K-means dynamic clustering analysis[J]. Building Science, 2010, 26(7):52-56,71.
|
[20] |
郭燕, 田延峰, 吴宏海, 等. 基于多源数据和模糊k-均值方法的农田土壤管理分区研究[J]. 土壤学报, 2013, 50(3):441-447.
|
[20] |
Guo Y, Tian Y F, Wu H H, et al. Zoning of soil management based on multi-sources data and fuzzy-K means[J]. Acta Pedologica Sinica, 2013, 50(3):441-447.
|
[21] |
赵玉明, 程立平, 梁亚红, 等. 东北黑土区演化历程及范围界定研究[J]. 土壤通报, 2019, 50(4):765-775.
|
[21] |
Zhao Y M, Cheng L P, Liang Y H, et al. Developing history and defining boundary of the black soil regions in Northeast China[J]. Chinese Journal of Soil Science, 2019, 50(4):765-775.
|
[22] |
刘宝元, 张甘霖, 谢云, 等. 东北黑土区和东北典型黑土区的范围与划界[J]. 科学通报, 2021, 66(1):96-106.
|
[22] |
Liu B Y, Zhang G L, Xie Y, et al. Delineating the black soil region and typical black soil region of northeastern China[J]. Chinese Science Bulletin, 2021, 66(1):96-106.
|
[23] |
中国科学院林业土壤研究所. 中国东北土壤[M]. 北京: 科学出版社,1980.
|
[23] |
Institute of forestry and soil,Chinese Academy of Sciences. Soil in Northeast China[M]. Beijing: Science Press,1980.
|
[24] |
中华人民共和国国土资源部. DZ/T 0258—2014 多目标区域地球化学调查规范(1:250 000)[S]. 北京: 中国标准出版社, 2015.
|
[24] |
Ministry of Land and Resources of the People’s Republic of China. DZ/T 0258—2014 Specification of multi-purpose regional geochemical survey(1:250 000)[S]. Beijing: China Standard Press, 2015.
|
[25] |
Clemens R, Peter F, Karl F, et al. The concept of compositional data analysis in practice:Total major element concentrations in agricultural and grazing land soils of Europe[J]. Science of the Total Environment, 2012, 426:196-210.
|
[26] |
Macqueen J. Some methods for classification and analysis of multivariate observations[C]// Proc of Berkeley Symposium on Mathematical Statistics & Probability, 1965.
|
[27] |
冯波, 郝文宁, 陈刚, 等. K-means算法初始聚类中心选择的优化[J]. 计算机工程与应用, 2013, 49(14):182-185,192.
|
[27] |
Feng B, Hao W N, Chen G, et al. Optimization to K-means initial cluster centers[J]. Computer Engineering and Applications, 2013, 49(14):182-185,192.
|
[28] |
安光辉, 马蓉, 陈伟, 等. 基于K-均值聚类的绿洲农田管理分区提取的研究[J]. 石河子大学学报:自然科学版, 2011, 29(6):757-761.
|
[28] |
An G H, Ma R, Chen W, et al. Delineation of precision agriculture management zones in oasis field based on K-means algorithm[J]. Journal of Shihezi University:Natural Science, 2011, 29(6):757-761.
|
[29] |
Rousseuw P J. Sihouettes:A graphical aid to the interpretation and validation of cluster analysis[J]. Journal of Computational and Applied Mathematics, 1987, 20:53-65.
|
[30] |
张明, 陈国光, 高超, 等. 华东多目标区域地球化学调查区土壤常量元素地球化学特征[J]. 吉林大学学报:地球科学版, 2014, 44(3):995-1002.
|
[30] |
Zhang M, Chen G G, Gao C, et al. Geochemical characteristics of macro elements in soils in the region covered by multi-purpose geochemical survey in Eastern China[J]. Journal of Jilin University:Earth Science Edition, 2014, 44(3):995-1002.
|
[31] |
Michael D, Paul D, Andreas S, et al. Principal component analysis of the geochemistry of soil developed on till in Northern Ireland[J]. Journal of Maps, 2013, 9(3):373-389.
|
[32] |
Sandra B, Efren G O, Francisco J G N, et al. Geochemical distribution of major and trace elements in agricultural soils of Castilla-La Mancha (central Spain):Finding criteria for baselines and delimiting regional anomalies[J]. Environmental Science and Pollution Research, 2017, 26(4):3100-3114.
|
[33] |
Drew L J, Grunsky E C, Sutphin D M, et al. Multivariate analysis of the geochemistry and mineralogy of soils along two continental-scale transects in North America[J]. Science of the Total Environment, 2010, 409(1):218-227.
|
[34] |
韩晓萌, 戴慧敏, 梁帅, 等. 黑龙江省拜泉地区典型黑土剖面元素地球化学特征及其环境指示意义[J]. 地质与资源, 2020, 29(6):556-563.
|
[34] |
Han X M, Dai H M, Liang S, et al. Element geochemistry of the typical black soil sections in Baiquan area,Heilongjiang Province:Environmental implication[J]. Geology and Resources, 2020, 29(6):556-563.
|
[35] |
Chipres J A, Calleja A D L, Tellez J I, et al. Geochemistry of soils along a transect from Central Mexico to the Pacific Coast:A pilot study for continental-scale geochemical mapping[J]. Applied Geochemistry, 2009, 24(8):1416-1428.
|
[36] |
Wilson M J. The importance of parent material in soil classification:A review in a historical context[J]. Catena, 2019, 182:104-131.
|
[37] |
Fabian E G, Jasmin B, Volkmar M, et al. From geological to soil parent material maps:A random forest-supported analysis of geological map units and topography to support soil survey in South Tyrol[J]. Geoderma, 2019, 354:113884.
|
[38] |
Rudolph S M, Justin B R. Investigating surficial geologic controls on soil properties,inorganic nutrient uptake,and northern hardwood growth in Western Massachusetts,USA[J]. Journal of Soil Science and Plant Nutrition, 2020, 20:19-20.
|
[39] |
杨雪艳, 张丽, 袭祝香, 等. 东北地区春季沙尘天气变化特征及其与大气环流变化的关系[J]. 气象与环境学报, 2018, 34(4):75-83.
|
[39] |
Yang X Y, Zhang L, Qiu Z X, et al. Characteristics of sand-dust events and their relationships with atmospheric circulation in spring in Northeast China[J]. Journal of Meteorology and Environment, 2018, 34(4):75-83.
|
[40] |
袁方, 谢远云, 迟云平. 哈尔滨尘暴天气沉降物的物质组成及其对物源的限制[J]. 中国地质, 2018, 45(6):1177-1187.
|
[40] |
Yuan F, Xie Y Y, Chi Y P. Material charateristics of dust fallouts during the dust-storm weather in Harbin:Constraint on the provenance[J]. Geology in China, 2018, 45(6):1177-1187.
|
[41] |
谢远云, 孟杰, 郭令芬, 等. 哈尔滨沙尘沉降物稀土元素地球化学特征及其物源分析[J]. 地球科学:中国地质大学学报, 2013, 38(5):923-933.
|
[41] |
Xie Y Y, Meng J, Guo L F, et al. REE Geochemistry for sand-dust fallouts in Harbin,Heilongjiang Province and provenance analysis[J]. Earth Science:Journal of China University of Geosciences, 2013, 38(5):923-933.
|
[1] |
ZHENG Xu-Ying, XU Ke-Wei, GU Lei, WANG Guo-Jian, LI Guang-Zhi, GUO Jia-Qi, ZOU Yu, BORJIGIN Tenger. Distribution of microorganisms in the typical geothermal field environment and its significance for geothermal exploration[J]. Geophysical and Geochemical Exploration, 2023, 47(5): 1127-1136. |
[2] |
SONG Wei-Fang, LIU Jian-Zhong, WU Pan, LI Jun-Hai, WANG Ze-Peng, YANG Cheng-Fu, TAN Qin-Ping, WANG Da-Fu. A successful application of the tectono-geochemistry weak information extraction method in the prospecting of Carlin-type gold deposits in southwestern Guizhou Province[J]. Geophysical and Geochemical Exploration, 2022, 46(6): 1338-1348. |
|
|
|
|