|
|
The clay mineral composition and environmental implications of the typical black soil profiles of the northern Songnen Plain |
HAN Xiao-Meng1,2,3( ), DAI Hui-Min1,2,3, LIU Kai1,2,3 |
1. Shenyang Center of China Geological Survey, Shenyang 110034, China 2. Key Laboratory of Black Soil Evolution and Ecological Effect, Ministry of Natural Resources, Shenyang 110034, China 3. Key Laboratory of Black Soil Evolution and Ecological Effect, Liaoning Province, Shenyang 110034, China |
|
|
Abstract This study investigated the clay mineral composition of the soil profiles of cropland for soybean/maize rotation, forest land, grassland, and farmland returned to forest in the black soil regions of the northern Songnen Plain through field investigation, the analysis of soil chemical composition, the X-ray diffraction (XRD) spectrum analysis of soil clay minerals, and the analysis of soil weathering degree. The purpose of this study is to explore the chemical composition, clay mineral composition, and weathering change patterns of the soil profiles of the land for different uses and their environmental implications. The results show that in the soil profiles, the land for different uses is in the order of grassland > cropland > forest land > wasteland regarding the potassium, sodium, and calcium contents, in the order of cropland > forest land > grassland > wasteland regarding the organic carbon content in the soil at a depth less than 60 cm, in the order of wasteland > grassland > forest land > cropland regarding the organic carbon content in the soil at a depth greater than 60~80 cm, in the order of farmland returned to forest and wasteland > forest land > cropland > grassland regarding the soil weathering degree, and in the order of wasteland > grassland and forest land > cropland in terms of the soil leaching degree. The clay minerals in the soil of land for different uses area mainly consist of montmorillonites, kaolinites, vermiculites, hydromicas, and chlorites. The cropland, forest land, grassland, and wasteland are dominated by the 2:1 type of non-expansive clay minerals, the 2:1 type of non-expansive clay minerals, the 2:1 type of expansive clay minerals, and the 1:1 type of clay minerals, respectively. As shown by the comparison of the clay mineral assemblages and their contents in the soil of land for different uses in the study area, as well as the calculation of the weathering degree of the soil profiles, minerals such as chlorites in the soil transition to kaolinites and montmorillonites, hydromicas transition to vermiculites, and the environment has changed from a dry and cold climate to a wet and hot climate as the weathering degree and pedogenesis deepen.
|
Received: 25 January 2022
Published: 03 January 2023
|
|
|
|
|
|
Different land-use types and the location of typical black soil profiles in the study area
|
|
Field photos of typical black soil profile in the study
|
|
Distribution characteristics of major elements of soil profile in the study area
|
|
Distribution characteristics of minerals of soil profile in the study area
|
|
Chemical weathering index (CIA) and silica-aluminum-Iron ratio (Saf) of soil profile in the study area
|
[1] |
李小虎, 张新虎, 郑朋, 等. 土壤矿物学研究综述[J]. 甘肃地质学报, 2003, 12(1): 37-42.
|
[1] |
Li X H, Zhang X H, Zheng P, et al. Adbance on the research of soil mineralogy[J]. Acta Geologica Gansu, 2003, 12(1): 37-42.
|
[2] |
汤艳杰, 贾建业, 谢先德. 粘土矿物的环境意义[J]. 地学前缘, 2002, 9(2):338-344.
|
[2] |
Tang Y J, Jia J Y, Xie X D. Environment significance of clay minerals[J]. Earth Science Frontiers, 2002, 9(2):338-344.
|
[3] |
郭正堂, 丁仲礼, 刘东生. 黄土中的沉积—成壤事件与第四纪气候旋回[J]. 科学通报, 1996, 41(1): 56-59.
|
[3] |
Guo Z T, Ding Z L, Liu D S. Sedimentation-soil-forming events and Quaternary climate cyclones in loess[J]. Chinese Science Bulletin, 1996, 41(1): 56-59.
|
[4] |
张铭杰, 王先彬. 干旱地区硫化矿床风化过程的穆斯堡尔谱特征:以青海锡铁山铅锌矿为例[J]. 沉积学报, 1998, 16(4): 153-157.
|
[4] |
Zhang M J, Wang X B. The Mössbauer Spectra characteristics in weathering of sulfide deposits in drought district:A case study of Xitieshan lead-zinc deposit, Qinghai Province[J]. Acta Sedimentologica Sinica, 1998, 16(4): 153-157.
|
[5] |
张铭杰, 张昱, 李小虎, 等. 干旱半干旱地区土壤矿物组成特征及其环境意义[J]. 兰州大学学报:自然科学版, 2007, 43(3): 1-7.
|
[5] |
Zhang M J, Zhang Y, Li X H, et al. Mineral compositions of soil in the arid and semiarid region and their environmental significance[J]. Journal of Lanzhou University:Natural Sciences, 2007, 43(3): 1-7.
|
[6] |
刘东生. 黄土与环境[M]. 北京: 科学出版社, 1985.
|
[6] |
Liu D S. Loess and the environment[M]. Beijing: Science Press, 1985.
|
[7] |
陈涛, 王欢, 张祖青, 等. 粘土矿物对古气候指示作用浅析[J]. 岩石矿物学杂志, 2003, 22(4):416-420.
|
[7] |
Chen T, Wang H, Zhang Z Q, et al. Clay minerals as indicators of paleoclimate[J]. Acta Petrologica et Mineralogica, 2003, 22(4):416-420.
|
[8] |
孙庆峰, 陈发虎, Christophe Colin, 等. 粘土矿物在气候环境变化研究中的应用进展[J]. 矿物学报, 2011, 31(1): 146-152.
|
[8] |
Sun Q F, Chen F H, Colin C, et al. Application progress of clay minerals in the researches of climate and environment[J]. Acta Mineralogica Sinica, 2011, 31(1):146-152.
|
[9] |
戚兴超, 王晓雯, 刘艳丽, 等. 泰山山前平原土地利用方式对潮棕壤黏土矿物组成的影响[J]. 土壤学报, 2019, 56(3): 739-748.
|
[9] |
Qi X C, Wang X W, Liu Y L. et al. Effects of land use of different patterns on soil clay mineral compositions in piedmont plain of Mountain Tai[J]. Acta Pedologica Sinica, 2019, 56(3): 739-748.
|
[10] |
郑庆福, 赵兰坡, 冯君, 等. 利用方式对东北黑土粘土矿物组成的影响[J]. 矿物学报, 2011, 31(1): 139-145.
|
[10] |
Zheng Q F, Zhao L P, Feng J, et al. Effects of land-use patterns on evolution of clay minerals of black soil in Northeast China[J]. Acta Mineralogica Sinica, 2011, 31(1): 139-145.
|
[11] |
袁宁, 王继红, 程恩宝, 等. 不同利用方式对土壤黏粒矿物组成的影响[J]. 吉林农业大学学报, 2019, 41(1): 55-60.
|
[11] |
Yuan N, Wang J H, Cheng E B, et al. Effects of land use patterns on soil clay mineral composition[J]. Journal of Jilin Agricultural University, 2019, 41(1): 55-60.
|
[12] |
Liu Y L. Soil mineralogy changes with different agricultural practices during 8-year soil development from the parent material of a mollisol[J]. Advances in Agronomy, 2017, 142:143-179.
|
[13] |
冯君, 赵兰坡, 郑庆福. 吉林西部不同利用方式盐渍化草甸土黏粒矿物组成的分析[C]// 面向未来的土壤科学(上册)——中国土壤学会第十二次全国会员代表大会暨第九届海峡两岸土壤肥料学术交流研讨会论文集, 2012. FengJ, ZhaoL P, ZhengQ F, et al. Analysis of mucilaginous mineral composition of salinized meadow soils of different land use patterns in western Jilin[C]// Soil Science for the Future (Previous Book)-Proceedings of the 12th National Congress of the Soil Society of China and the 9th Cross-Straits Soil and Fertilizer Symposium, 2012.
|
[14] |
戴慧敏, 刘国栋, 刘凯, 等. 东北黑土地1:25万土地质量地球化学调查二级项目成果报告[R]. 中国地质调查局沈阳地质调查中心, 2019.
|
[14] |
Dai H M, Liu G D, Liu K, et al. Report of the geochemical survey for the black soil in the northeastern China (1:250 000)[R]. Shenyang Center of China Geological Survey, 2019.
|
[15] |
McLennan S M. Weathering and global denudation[J]. The Journal of Geology, 1993, 101(2):295-303
|
[16] |
王攀, 宁凯, 石迎春, 等. 吴起全新世土壤剖面常量元素地球化学特征[J]. 土壤通报, 2019, 50(6):1261-1268.
|
[16] |
Wang P, Ning K, Shi Y C, et al. Geochemical characteristics of major elements of holocene soil from Wuqi, Shaanxi Province[J]. Chinese Journal of Soil Science, 2019, 50(6):1261-1268.
|
[17] |
李徐生, 韩志勇, 杨守业, 等. 镇江下蜀土剖面的化学风化强度与元素迁移特征[J]. 地理学报, 2007, 62(11): 1174-1184.
|
[17] |
Li X S, Han Z Y, Yang S Y, et al. Chemical weathering intensity and element migration features of the Xiashu loess profile in Zhenjiang[J]. Acta Geographica Sinica, 2007, 62(11): 1174-1184.
|
[18] |
徐树建, 倪志超, 丁新潮. 山东平阴黄土剖面常量元素地球化学特征[J]. 矿物岩石地球化学通报, 2016, 35(2):353-359.
|
[18] |
Xu S J, Ni Z C, Ding X C, et al. Geochemical characteristics of macronutrients in the loess profile of Pingyin, Shandong[J]. Bulletin of Mineralogy,Petrology and Geochemistry, 2016, 35(2):353-359.
|
[19] |
刘银飞, 孙彬彬, 贺灵, 等. 福建龙海土壤垂向剖面元素分布特征[J]. 物探与化探, 2016, 40(4): 713-721.
|
[19] |
Liu Y F, Sun B B, He L, et al. Vertical distribution of elements in soil profiles in Longhai,Fujian Province[J]. Geophysical and Geochemical Exploration, 2016, 40(4): 713-721.
|
[20] |
李元. 草原土壤粘土矿物组成及其环境意义[D]. 广州: 中山大学, 2014.
|
[20] |
Li Y. Composition of clay minerals in grassland soils and their environmental significance[D]. Guangzhou: Sun Yat-Sen University, 2014.
|
[21] |
张青青, 黄菁华, 姚军, 等. 淳化黄土—古土壤序列黏土矿物分布特征及古环境意义[J]. 土壤学报, 2018, 55(5): 1062-1073.
|
[21] |
Zhang Q Q, Huang J H, Yao J, et al. Distribution of clay minerals in the Chunhua loess-paleosol sequence and its paleoenvironmental significance[J]. Acta Pedologica Sinica, 2018, 55(5): 1062-1073.
|
[22] |
熊毅. 土壤胶体第二册:土壤胶体研究法[M]. 北京: 科学出版社, 1985.
|
[22] |
Xiong Y. Soil colloid (part II):Reseach methods of soil colloids[M]. Beijing: Science Press, 1985.
|
[23] |
鲁春霞. 粘土矿物在古环境研究中的指示作用[J]. 中国沙漠, 1997, 17(4):456-460.
|
[23] |
Lu C X. Indicative role of clay minerals in palaeoenvironmental studies[J]. Journal of Desert Research. 1997, 17(4):456-460.
|
[24] |
Vanderaveroet P. Miocene to pleistocene clay mineral sedimentation on the New Jersey shelf[J]. Oceanologica Acta, 2000, 23(1):25-36.
|
[25] |
Winkler A, Wolf-Welling T, Stattegger K, et al. Clay mineral sedimentation in high northern latitude deep-sea basins since the Middle Miocene (ODP Leg 151, NAAG)[J]. International Journal of Earth Sciences, 2002, 91(1):133-148.
|
[26] |
姚合法, 林承焰, 侯建国, 等. 苏北盆地粘土矿物转化模式与古温度[J]. 沉积学报, 2004, 22(1): 29-35.
|
[26] |
Yao H F, Lin C Y, Hou J G, et al. Transformation patterns and paleotemperatures of clay minerals in the Northern Jiangsu Basin[J]. Acta Sedimentologica Sinica, 2004, 22(1): 29-35.
|
[27] |
申聪颖, 赵兰坡, 刘杭, 等. 不同母质发育的东北黑土的粘粒矿物组成研究[J]. 矿物学报, 2013, 33(3): 382-388.
|
[27] |
Shen C Y, Zhao L P, Liu H, et al. Mineral compositions of clay particles in Northeastern China black soils developed from different matrices[J]. Acta Mineralogica Sinica, 2013, 33(3): 382-388.
|
[1] |
SONG Yun-Hong, YANG Feng-Chao, LIU Kai, DAI Hui-Min, XU Jiang, HAN Xiao-Meng. Geochemical characteristics of major elements in the black soil profiles of the Hailun area, Heilongjiang Province and their implications for provenance[J]. Geophysical and Geochemical Exploration, 2022, 46(5): 1105-1113. |
[2] |
Bo LI, Han-Jun LIU, Jie ZHOU, Li-Jun QU. A comprehensive analysis of lead-zinc geophysical and geochemical anomalies and ore-search prospect in the Jiulong Mountain, Hunan Province[J]. Geophysical and Geochemical Exploration, 2019, 43(1): 36-45. |
|
|
|
|