|
|
The application of thorium normalization to data processing of gamma ray spectrum in Dalin area,Kailu sub-basin,Songliao Basin |
HUANG Xiao1( ), YU Hong-Long1( ), JIANG Li2, WANG Dian-Xue1, ZHOU Wen-Bo1, MA Zhen-Yu1, ZHANG Liang-Liang1, TANG Guo-Long1 |
1. No.243 Genlogical Party,CNNC,Chifeng 024000,China 2. School of Geophysics and Measurement-control Technology, East China University of Technology, Nanchang 330013,China |
|
|
Abstract In exploration of the sandstone type uranium deposits, the effective information of gamma ray spectrum is often covered by surface information due to the influence of surface overburden and other factors. In order to extract information related to uranium mineralization, the authors carried out the application of thorium normalization by gamma ray spectrum in Dalin area. The residual anomaly of uranium extracted is in agreement with the distribution of the known uranium orebodies and faults. The analytical results show that the method of thorium normalization can exhibit the distribution of faults effectively. Within this area uranium mineralization is controlled by faults, the abnormal area of uranium residual is also the transition zone of oxidation-reduction, which provides the basis for the next exploration within this area.
|
Received: 25 September 2020
Published: 29 April 2021
|
|
Corresponding Authors:
YU Hong-Long
E-mail: huangxiao243@163.com;yuhonglong243@163.com
|
|
|
|
|
Location of study area and interior tectonic units of the Basin
|
|
Structural outline map of Dalin area 1—Sifangtai formation of upper Cretaceous;2—Nenjiang formation of upper Cretaceous;3—Yaojia formation of upper Cretaceous;4—Fuxin formation of lower Cretaceous;5—diabase; 6—Hercynian granite;7—boundary of granite palaeo-uplift; 8—fault;9—uranium industrial hole;10—uranium mineralization hole;11—non mineralized hole;12—workspace area
|
类别 | 最小值 | 最大值 | 平均值 | 标准差 | 变异系数/% | X+δ | X+2δ | X+3δ | U/10-6 | 0.10 | 3.70 | 1.25 | 0.62 | 49.16 | 1.87 | 2.49 | 3.10 | Th/10-6 | 0.20 | 14.00 | 5.18 | 2.60 | 50.07 | 7.78 | 10.37 | 12.97 | K/% | 0.70 | 2.80 | 1.66 | 0.22 | 13.29 | 1.88 | 2.11 | 2.33 | Th/U | 0.25 | 9.29 | 4.21 | 1.67 | 2.69 | 5.88 | 7.55 | 9.22 | (U /K)/10-4 | 0.04 | 1.87 | 0.76 | 0.37 | 2.14 | 1.13 | 1.50 | 1.87 | (Th / K)/10-4 | 0.14 | 7.93 | 3.13 | 1.61 | 1.77 | 4.74 | 6.35 | 7.96 |
|
The content and characteristic parameters of uranium,thorium and kalium in the Dalin area
|
|
Contour map of measured uranium content in the Dalin area 1—oxidation zone A; 2—oxidation zone B; 3—flow direction of oxidation water; 4—normal fault; 5—inverted fault; 6—uranium mineralization hole; 7—non mineralized hole
|
|
Contour map of measured thorium content in the Dalin area 1—oxidation zone A; 2—oxidation zone B; 3—flow direction of oxidation water; 4—normal fault; 5—inverted fault; 6—uranium mineralization hole; 7—non mineralized hole
|
|
Contour map of predicted uranium content in the Dalin area 1—oxidation zone A;2—oxidation zone B;3—flow direction of oxidation water;4—normal fault;5—inverted fault;6—uranium mineralization hole;7—non mineralized hole
|
|
Contour map of residual uranium content in the Dalin area 1—oxidation zone A; 2—oxidation zone B; 3—flow direction of oxidation water; 4—normal fault; 5—inverted fault; 6—uranium mineralization hole; 7—non mineralized hole; 8—favorable areas and number
|
|
Contour map of residual uranium content in Kailu Sub-basin 1—oxidation zone A; 2—oxidation zone B; 3—flow direction of oxidation water; 4—normal fault; 5—inverted fault; 6—uranium mineralization hole; 7—favorable areas and number
|
[1] |
柳建新. 地面高精度磁测与γ能谱测量一体化研究[D]. 成都:成都理工大学, 2012.
|
[1] |
Liu J X. The integration studies of ground high-accuracy magnetic prospecting and gamma-ray spectrometry measurement[D]. Chengdu:Chengdu University of Technology, 2012.
|
[2] |
张永恒. 步行式γ能谱测量在航磁异常查证中的应用研究[D]. 成都:成都理工大学, 2012.
|
[2] |
Zhang Y H. Application study of the walking gamma spectrometer measurement method in the aeromagnetic anomalies[D]. Chengdu:Chengdu University of Technology, 2012.
|
[3] |
于新华. 基于PDA和蓝牙的数字化γ能谱仪的研制[D]. 成都:成都理工大学, 2010.
|
[3] |
Yu X H. The development of digital γ spectrometer based on PDA and bluetooth[D]. Chengdu:Chengdu University of Technology, 2010.
|
[4] |
贾文懿, 唐红, 苗放, 等. 放射性勘查工作手册[M]. 北京. 地质出版社, 1993.
|
[4] |
Jia W Y, Tang H, Miao F, et al. The manual of radioactive prospecting[M]. Beijing: Geological Publishing House, 1993.
|
[5] |
宁洪涛. 伽玛能谱低能谱段地质填图方法研究[D]. 南昌:东华理工大学, 2016.
|
[5] |
Ning H T. The Research on geological mapping method for low energy spectrum of gamma-ray spectrometry[D]. Nanchang:East China University of Technology, 2016.
|
[6] |
胡明考, 蔡根庆, 沈正新, 等. 应用航空伽玛能谱全谱信息预测铀成矿远景区[C] //中国核科学技术进展报—中国核学会2009年学术年会论文集, 2009,1(1):160-163.
|
[6] |
Hu M K, Cai G Q, Shen Z X, et al. Prognoses of prospective areas for uranium metallogenesis with full-spectrum information of airborne gammy-ray survey[C] //Progress Report on China Nuclear Sience & Technology, 2009,1(1):160-163.
|
[7] |
孙雪. 航空伽玛探测器能谱响应规律研究[D]. 成都:成都理工大学, 2010.
|
[7] |
Sun X. The study of γ energy spectrum response law in airborne gamma-ray spectrometry[D]. Chengdu:Chengdu University of Technology, 2010.
|
[8] |
吴慧山. 用航空γ能谱法普查铀矿[J]. 国外铀金地质, 2001,18(4):227-229.
|
[8] |
Wu H S. Uranium prospectingby airborne gamma spectrometry[J]. Overseas Uranium and Gold Geology, 2001,18(4):227-229.
|
[9] |
张士红, 林子瑜. 相山铀矿田航空能谱数据图像处理与分析[J]. 东华理工大学学报:自然科学版, 2012,35(2):124-128.
|
[9] |
Zhang S H, Lin Z Y. Image processing and analysis of airborne gamma spectrum in Xiangshan uranium ore-field[J]. Journal of East China Institute of Technology:Natural Science Edition, 2012,35(2):124-128.
|
[10] |
许坤, 李瑜. 开鲁盆地晚中生代地层[J]. 地层学杂志, 1995,19(2):88-95.
|
[10] |
Xu K, Li Y. Late mesozoic strata of the Kailu basin[J]. Journal of Stratigraphy, 1995,19(2):88-95.
|
[11] |
李茂, 许第桥, 杨丽娟, 等. CSAMT法在松辽盆地伊胡塔地区嫩江组中的定位应用[J]. 物探与化探, 2008,32(6):627-629.
|
[11] |
Li M, Xu D Q, Yang L J, et al. The orienting application of the CSAMT method in Nenjiang formation, Yihuta area, southwest Songliao basin[J]. Geophysical and Geochemical Exploration, 2008,32(6):627-629.
|
[12] |
程银行, 张天福, 曾威, 等. 中国北方中新生代盆地砂岩型铀超常富集的驱动力[J]. 大地构造与成矿学, 2020,44(4):590-606.
|
[12] |
Cheng Y H, Zhang T F, Zeng W, et al. Driving forces for sandstone-type uranium super-enrichment in Meso-Cenozoic basins, north China[J]. Geotectonica and Metallogenia, 2020,44(4):590-606.
|
[13] |
Cheng Y H, Wang S Y, Jin R S, et al. Global miocene tectonics and regionalsandstone-style uranium mineralization[J]. Ore Geology Reviews, 2019(106):238-250.
|
[14] |
龙期华, 何丹丹, 胡茂梅, 等. 相山河元背铀矿床近外围物化探异常特征及找矿效果[J]. 东华理工大学学报:自然科学版, 2013,36(2):194-198.
|
[14] |
Long Q H, He D D, Hu M M, et al. Geophysical and geochemical abnormal characteristics and ore-prospecting effect in the near perimeter area of Heyuanbei uranium deposit, Xiangshan ore-field[J]. Journal of East China Institute of Technology:Natural Science Edition, 2013,36(2):194-198.
|
[15] |
李继安, 贺建国. 伽玛能谱测量的应用及资料处理的探讨[J]. 铀矿地质, 2008,24(6):363-368.
|
[15] |
Li J A, He J G. Application of gamma spectrometry survey and discussion on data processing[J]. Uranium Geology, 2008,24(6):363-368.
|
[16] |
叶雷刚, 时志浩, 娄汉生, 等. 青海查查香卡地区地面伽马能谱特征与铀成矿关系研究[J]. 东华理工大学学报:自然科学版, 2020,43(3):214-222.
|
[16] |
Ye L G, Shi Z H, Lou H S, et al. Characteristics of ground gamma spectrum and its relationship with uranium mineralization in Chachaxiangka area, Qinghai[J]. Journal of East China Institute of Technology:Natural Science Edition, 2020,43(2):214-222.
|
[17] |
杨镜明, 张霖, 王成, 等. 地面氡及其子体测量在新疆汉水泉地区砂岩型铀矿找矿中的应用[J]. 新疆地质, 2007,25(4):436-439.
|
[17] |
Yang J M, Zhang L, Wang C, et al. The application of Fadon and its doughters survey to exploration of sandstone-type uranium deposits in Hanshuiquan area[J]. Xinjiang Geology, 2007,25(4):436-439.
|
[18] |
张云宜. 应用特征参数GU、FU、B处理区域伽玛能批资料的效果初探[J]. 铀矿地质, 1986,2(4):242-247.
|
[18] |
Zhang Y Y. The primary results of using the characteristic parameters GU,FU,B to process the regional data of gamma-ray spectrometry[J]. Uranium Geology, 1986,2(4):242-247.
|
[19] |
付锦, 赵宁博, 裴承凯, 等. 中国铀、钍、钾元素地球化学场特征及与铀矿化关系[J]. 物探与化探, 2014,38(2):200-204.
|
[19] |
Fu J, Zhao N B, Pei C K, et al. Geochemical characteristics of uranium, thorium and potassium anomalies in China in relation to uranium mineralization[J]. Geophysical and Geochemical Exploration, 2014,38(2):200-204.
|
[20] |
陈铁华. 地面和航空放射性钍归一化数据与地下油藏的关系[J]. 世界地质, 1994,13(4):112-116.
|
[20] |
Chen T H. Relationship between surface and airborne radioactive thorium normalization and underground oil reservoirs[J]. Global Geology, 1994,13(4):112-116.
|
[21] |
高永光, 胡振琪, 祝民强, 等. 利用钍归一化法判断古地下水的迁移[J]. 辽宁工程技术大学学报, 2005,24(6):933-935.
|
[21] |
Gao Y G, Hu Z Q, Zhu M Q, et al. Judgment of movement of ancient underground water with normalization method of thorium data[J]. Journal of Liaoning Technical University, 2005,24(6):933-935.
|
[22] |
李继安. 钍归一化在盆地γ能谱资料处理中的应用[J]. 世界核地质科学, 2007,24(3):178-181.
|
[22] |
Li J A. Application on Th normalization for basin gamma spectrometry data processing[J]. World Nuclear Geoscience, 2007,24(3):178-181.
|
[23] |
汪志远, 李兵海, 张俊伟, 等. 全国铀矿资源潜力评价航放数据处理与研究[J]. 铀矿地质, 2012,28(6):361-369.
|
[23] |
Wang Z Y, Li B H, Zhang J W, et al. Airborne radioactivity data processing and application in the potential evaluation of uranium resource in China[J]. Uranium Geology, 2012,28(6):361-369.
|
[24] |
蔡文军, 沈正新, 祁程, 等. 宁安盆地航空伽马能谱特征及铀成矿远景预测[J]. 铀矿地质, 2017,33(3):156-163.
|
[24] |
Cai W J, Shen Z X, Qi C, et al. Airborne gamma ray spectrum characteristics and uranium mineralization prospect forecast of Ning'an basin area[J]. Uranium Geology, 2017,33(3):156-163.
|
[1] |
Yu Xiang, Wang Shuo, Hu Ying-Cai, Duan Shu-Xin. Study on electrical structure and uranium metallogenic environment of basalt-covered area in the northern Erlian Basin[J]. Geophysical and Geochemical Exploration, 2022, 46(5): 1157-1166. |
[2] |
FENG Zhi-Bing, NIE Bing-Feng, NIE Feng-Jun, JIANG Li, XIA Fei, LI Man-Gen, YAN Zhao-Bin, HE Jian-Feng, CHENG Ruo-Dan. Application progress of geophysical methods in exploration of sandstone-type uranium deposit[J]. Geophysical and Geochemical Exploration, 2021, 45(5): 1179-1188. |
|
|
|
|