|
|
Optimization of vibroseis excitation parameters and its application effect |
QIU Qing-Liang1( ), CAO Nai-Wen2, BAI Ye3 |
1. No. 102 Exploration Party,Jilin Coalfield Geological Bureau,Tonghua 135000,China 2. No. 203 Exploration Party,Jilin Coalfield Geological Bureau,Siping 136000,China 3. Geophysical Survey Party,Jilin Coalfield Geological Bureau,Changchun 130033,China |
|
|
Abstract Vibroseis technology is widely used in desert,Gobi and deep phreatic surface areas where drilling is difficult.In the process of field exploration,it is necessary to select suitable parameters to ensure the effect of seismic exploration.In this paper,the J mining area coal field seismic exploration was chosen as the research object and,for the purpose of improving the seismic data resolution and signal-to-noise ratio(SNR),the sweep frequency range,scanning length,driving level and vibration frequency of vibroseis parameters were tested.Through the combination of qualitative and quantitative analysis,the best excitation parameters were selected for data acquisition,and the high quality of seismic data were obtained on the seismic time profile,which shows the good application effect.The results prove that it is effective and feasible to use vibroseis acquisition technology in coal field seismic exploration in areas where explosive excitation is difficult.
|
Received: 29 September 2020
Published: 27 July 2021
|
|
|
|
|
模型编号 | 地质层位 | 深度h/m | 层速度vc/(m·s-1) | 地层倾角φ/(°) | 1 | N1d底界面 | 90 | 1750 | 2 | 2 | K1h上含煤段底界面 | 315 | 2600 | 10 | 3 | K1h下含煤段底界面 | 500 | 2880 | 10 | 4 | K1h底界面 | 600 | 3170 | 8 |
|
Geophysical parameters of J mining area
|
|
Vibroseis reference signal
|
|
Frequency analysis
|
|
Comparison of single shot records with different scanning length test
|
|
Parameter analysis of scanning length test
|
|
Comparison of single shot records between one source(a) and two sources(b)
|
|
Parameter analysis of vibration frequency test
|
|
Seismic time profile of mining area J
|
地震反射波 | 地质层位 | 钻孔编号 | 地震解释 深度/m | 钻孔揭露 深度/m | 绝对误差/m | 相对误差/% | T0 | N1d底界面 | ZK1 | 74 | 77.7 | -3.7 | -4.8 | | | ZK2 | 65 | 69 | -4.0 | -5.8 | T1 | K1h上部泥岩段界面 | ZK1 | 223 | 212.7 | 10.3 | 4.8 | | | ZK2 | 192 | 186.2 | 5.8 | 3.1 | T2 | K1h上含煤段界面 | ZK1 | 378 | 380 | -2.0 | -0.5 | | | ZK2 | 316 | 320.5 | -4.5 | -1.4 | T3 | K1h底界面 | ZK1 | 537 | 521 | 16.0 | 3.1 | | | ZK2 | — | — | — | — |
|
Drilling verification Statistics
|
[1] |
李世峰, 金瞰昆, 周俊杰. 资源与工程地球物理勘探[M]. 北京: 化学工业出版社, 2008: 4.
|
[1] |
Li S F, Jin K K, Zhou J J. Geophysical exploration of resources and engineering [M]. Beijing: Chemical Industry Press, 2008: 4.
|
[2] |
倪宇东. 可控震源地震勘探新方法研究与应用[D]. 北京:中国地质大学, 2012.
|
[2] |
Ni Y D. Research and application of new vibroseis seismic exploration method[D]. Beijing:China University of Geosciences, 2012.
|
[3] |
田玉昆, 李桂林, 刘晖, 等. 哈拉湖地区低频可控震源天然气水合物地球物理响应特征研究[J]. 地球物理学报, 2016, 59(11):4287-4296.
|
[3] |
Tian Y K, Li G L, Liu H, et al. Study on geophysical response characteristics of low frequency vibroseis natural gas hydrate in Hala Lake area[J]. Chinese Journal of Geophysics, 2016, 59(11):4287-4296.
|
[4] |
赫云兰, 徐东晶, 梁明星, 等. 可控震源在准南地区煤田三维地震采集中的应用[J]. 煤炭技术, 2017, 36(7):121-123.
|
[4] |
He Y L, Xu D J, Liang M X, et al. Application of vibroseis in Coalfield 3D seismic acquisition in southern Junggar Basin[J]. Coal Technology, 2017, 36(7):121-123.
|
[5] |
王俊秋, 林君, 姜弢, 等. 可控震源地震方法在金昌铜镍矿区的应用实验[J]. 吉林大学学报:地球科学版, 2011, 41(5):1617-1622.
|
[5] |
Wang J Q, Lin J, Jiang T, et al. Application experiment of vibroseis seismic method in Jinchang copper nickel mining area[J]. Journal of Jilin University:Earth Science Edition, 2011, 41(5):1617-1622.
|
[6] |
安好收, 罗传根. 浅层纵横波联合勘探在活动断层探测中的应用[J]. 物探与化探, 2019, 43(3):543-550.
|
[6] |
An H S, Luo C G. Application of shallow PS-wave combined exploration in active fault detection[J]. Geophysical and Geochemical Exploration, 2019, 43(3):543-550.
|
[7] |
张玉军, 田雪丰, 冷逛昇. 可控震源在地震勘探激发条件复杂地区的应用[J]. 煤田地质与勘探, 2015, 43(5):108-112.
|
[7] |
Zhang Y J, Tian X F, Leng G S. Application of vibroseis in areas with complex excitation conditions[J]. Coalfield Geology and Exploration, 2015, 43(5):108-112.
|
[8] |
孙海川. 可控震源地震采集技术在H探区煤炭勘查中的实验[J]. 物探与化探, 2020, 44(1):42-49.
|
[8] |
Sun H C. Experiment of vibroseis seismic acquisition technology in coal exploration in H exploration area[J]. Geophysical and Geochemical Exploration, 2020, 44(1):42-49.
|
[9] |
赵永林. NOMAD65可控震源驱动系统介绍[J]. 物探装备, 2006, 16(4):249-251.
|
[9] |
Zhao Y L. Introduction of NOMAD65 vibroseis drive system[J]. Geophysical Equipment, 2006, 16(4):249-251.
|
[10] |
曹务祥. 可控震源技术使用误区分析[J]. 石油地球物理勘探, 2006, 41(3):341-345.
|
[10] |
Cao W X. Analysis of errors in using vibroseis technology[J]. Oil Geophysical Prospecting, 2006, 41(3):341-345.
|
[11] |
刘冠军. 改善可控震源地震记录质量的方法[J]. 物探与化探, 2011, 35(4):521-523.
|
[11] |
Liu G J. Methods for improving the quality of vibroseis seismic records[J]. Geophysical and Geochemical Exploration, 2011, 35(4):521-523.
|
[12] |
徐建宇, 姜春香, 张保卫, 等. 浅层地震技术在陆域天然气水合物勘探中存在的问题库及对策[J]. 物探与化探, 2017, 41(6):1127-1132.
|
[12] |
Xu J Y, Jiang C X, Zhang B W, et al. Problems and Countermeasures of shallow seismic technology in land gas hydrate exploration[J]. Geophysical and Geochemical Exploration, 2017, 41(6):1127-1132.
|
[13] |
薛海飞, 董守华, 陶文朋. 可控震源在地震勘探中的参数选择[J]. 物探与化探, 2010, 34(2):185-190.
|
[13] |
Xue H F, Dong S H, Tao W P. Parameter selection of vibroseis in seismic exploration[J]. Geophysical and Geochemical Exploration, 2010, 34(2):185-190.
|
[14] |
郭彦民. 利用可控震源进行高分辨率地震勘探[J]. 中国煤田地质, 1996, 8(3):72-73,77.
|
[14] |
Guo Y M. High resolution seismic exploration using vibroseis[J]. Coalfield Geology of China, 1996, 8(3):72-73,77.
|
[15] |
中华人民共和国国土资源部. 中华人民共和国地质矿产行业标准: DZ/T 0300-2017煤田地震勘探规范[S]. 北京: 地质出版社, 2017: 4.
|
[15] |
Ministry of Land and Resources of the People's Republic of China. Industry standard of Geology and mineral resources of the people's Republic of China: DZ / T 0300-2017 coal field seismic exploration specification [S]. Beijing: Geological Publishing House, 2017: 4.
|
[1] |
CHEN Zi-Long, WANG Hai-Yan, GUO Hua, WANG Guang-Wen, ZHAO Yu-Lian. A review of the research progress and application status of seismic full waveform inversion[J]. Geophysical and Geochemical Exploration, 2023, 47(3): 628-637. |
[2] |
LIU Qing-Wen, LI Jian, QIN De-Wen. Application of the AVO gradient-based spectral bluing technique in the characterization of thin sandstones in moderately deep strata[J]. Geophysical and Geochemical Exploration, 2023, 47(2): 438-446. |
|
|
|
|