|
|
The application of 3D edge-preserving de-noising methods based on structure oriented in a complex faults block:A case study of C oilfield in East China Sea |
SUN Yong-Zhuang( ), LI Jian, QIN De-Wen, LIU Qing-Wen |
Shanghai Branch of CNOOC (China) Ltd.,Shanghai 200335,China |
|
|
Abstract Block C of the East China Sea has the characteristics of complex fault block development,strong stratigraphic heterogeneity,and complex reservoir connectivity.Affected by acquisition and other factors, the random noise of seismic data is relatively serious, which brings great challenges to subsequent exploration and development work.To eliminate random noise effectively and keep the structure information of seismic reflection at the same time,this paper proposes a de-noising method by combining anisotropic diffusion filter technique and F-X edge-preserving filter method.The new method obtains the dip and azimuth of the target formation by gradient structure tensor,extracts the filter window at the target point under the constraints of the dip and azimuth information,and uses adaptive F-X filtering in the filter window to suppress random noise,finally reaching the goals of improving the continuity of seismic reflection in complex fault zone and enhancing the coherence of reflection event and highlighting the edges.The results of 3D modeling and application in real 3D data indicate that the new method has effectively smoothed the reflection events without blurring relevant details of faults and discontinuities on seismic sections. Compared with conventional de-noising method,the new method can improve signal-to-noise ratio and protect seismic reflection and structural information.Meanwhile,the continuity of the edge information of the geological body is better displayed in the time slice.
|
Received: 03 June 2020
Published: 27 July 2021
|
|
|
|
|
地质结构 | 特征向量对应物理含义 | 特征值关系 | 连续沉积较平缓的层结构位置 | v1方向数据趋势急剧变化,其他方向变化不明显 | λ1≥λ2≈λ3 | 不连续地质体边界(断层、尖灭等)线结构位置 | v1和v2方向数据趋势急剧变化,其他方向变化不明显 | λ1≈λ2≥λ3 | 无明显地震结构的各向同性地质体非线性结构位置 | 三方向数据变化趋势相似 | λ1≈λ2≈λ3>0 |
|
The geological structure table corresponding to eigenvalues and eigenvectors
|
|
Estimate the normal direction v1 of the local strata according to the structure tensor matrix
|
|
Schematic diagram of multi-window filter window a—hexagonal filter window;b—pentagonal filter window;c—square filter window
|
|
Three-dimensional fault model with and without noise a—raw model without noise;b—the model with noise of 5 dB
|
|
Slices of raw model and model with noise a—raw model inline;b—raw model xline;c—raw model time slice;d—model with noise inline;e—model with noise xline;f—model with noise time slice
|
|
De-noising result by conventional F-X method a—de-noising model inline;b—de-noising model xline;c—de-noising model time slice
|
|
De-noising result by anisotropic diffusion filter method a—de-noising model inline;b—de-noising model xline;c—de-noising model time slice
|
|
De-noising result of the method proposed in this paper a—de-noising model inline;b—de-noising model xline;c—de-noising model time slice
|
|
Original data,noisy data and the results of three de-noising methods in single trace comparison 1—raw data;2—de-noising result by our new approach;3—de-noising result by the anisotropic approach;4—noise data;5—de-noising result by traditional F-X approach
|
|
Raw seismic data and corresponding structural dip and azimuth profiles a—raw seismic data;b—structural dip;c—structural azimuth
|
|
Profiles of different filtering approaches a—de-noising result with new filtering approach;b—de-noising result with traditional F-X filtering approach;c—de-noising result with anisotropic diffusion filtering approach
|
|
Time slices of different method a—de-noising time slice with new filtering approach;b—de-noising time slice with traditional F-X filtering approach;c—de-noising time slice with anisotropic diffusion filtering approach
|
|
De-noising result before and after using different filter approaches 1—raw data;2—de-noising result by our new approach;3—de-noising result by the anisotropic approach;4—de-noising result by traditional F-X approach
|
|
Profiles of de-noising error with different filtering approaches a—de-noising error with new filtering approach;b—de-noising error with traditional F-X filtering approach;c—de-noising error with anisotropic diffusion filtering approach
|
|
Time slices of de-noising error with different filtering approaches a—time slice of de-noising error with new filtering approach;b—time slice of de-noising error with traditional F-X filtering approach;c—time slice of de-noising error with anisotropic diffusion filtering approach
|
[1] |
张广智, 常德宽, 王一慧, 等. 基于稀疏冗余表示的三维地震数据随机噪声压制[J]. 石油地球物理勘探, 2015, 50(4):600-606.
|
[1] |
Zhang G Z, Chang D K, Wang Y H, et al. 3D seismic random noise suppression with sparse and redundant representation[J]. Oil Geophysical Prospecting, 2015, 50(4):600-606.
|
[2] |
Canales L L. Radom noise reduction [C]// SEG Technical Program Expanded Abstracts, 1984:525-527.
|
[3] |
杨立强, 宋海斌, 郝天珧, 等. 基于二维小波变换的随机噪声压制方法[J]. 石油物探, 2005, 44(1):4-6.
|
[3] |
Yang L Q, Song H B, Hao T Y, et al. Method of 2D wavelet transform in attenuating random noise[J]. Geophysical Prospecting for Petroleum, 2005, 44(1):4-6.
|
[4] |
刘剑, 秦飞龙. 改进的小波阈值法及其在地震数据降噪处理中的应用[J]. 物探与化探, 2020, 44(4):784-789.
|
[4] |
Liu J, Qin F L. The application of the improved wavelet threshold method to seismic data de-noising[J]. Geophysical and Geochemical Exploration, 2020, 44(4):784-789.
|
[5] |
彭才, 朱仕军, 孙建库, 等. 小波变换域—变换及其去噪效果分析[J]. 石油物探, 2007, 46(2):112-114.
|
[5] |
Peng C, Zhu S J, Sun J K, et al. K-L transformation in wavelet conversion domain and the analysis of de-noise effect[J]. Geophysical Prospecting for Petroleum, 2007, 46(2):112-114.
|
[6] |
董烈乾, 周恒, 郭善力, 等. 一种改进型seislet域迭代阈值压制混叠噪声方法[J]. 物探与化探, 2020, 44(3):568-572.
|
[6] |
Dong L Q, Zhou H, Guo S L, et al. An optimized blending noise suppression based on seislet domain iterative threshold denoising approach[J]. Geophysical and Geochemical Exploration, 2020, 44(3):568-572.
|
[7] |
胡天跃, 王润秋. 地震资料处理中的聚束滤波方法[J]. 地球物理学报, 2000, 43(1):105-115.
|
[7] |
Hu T Y, Wang R Q. Beamforming in seismic data processing[J]. Chinese Journal of Geophysics, 2000, 43(1):105-115.
|
[8] |
薛亚茹, 陆文凯, 陈小宏, 等. 基于正交多项式变换的CMP动校正道集随机噪声压制[J]. 地球物理学进展, 2009, 24(1):159-163.
|
[8] |
Xue Y R, Lu W K, Chen X H, et al. Random noise attenuation based on orthogonal polynomials transform for CMP gathers[J]. Progress in Geophysics, 2009, 24(1):159-163.
|
[9] |
张华, 陈小宏, 李红星, 等. 曲波变换三维地震数据去噪技术[J]. 石油地球物理勘探, 2017, 52(2):226-232.
|
[9] |
Zhang H, Chen X H, Li H X, et al. 3D seismic data de-noising approach based on Curvelet transform[J]. Oil Geophysical Prospecting, 2017, 52(2):226-232.
|
[10] |
王亚娟, 李怀良, 庹先国, 等. 一种集成经验模态分解的样本熵阈值微地震信号降噪方法[J]. 物探与化探, 2019, 43(5):1083-1089.
|
[10] |
Wang Y J, Li H L, Tuo X G, et al. A denoising method for microseismic signal based on the ensemble empirical mode decomposition of sample entropy threshold[J]. Geophysical and Geochemical Exploration, 2019, 43(5):1083-1089.
|
[11] |
郭奇, 曾昭发, 于晨霞, 等. 基于高精度字典学习算法的地震随机噪声压制[J]. 物探与化探, 2017, 41(5):907-913.
|
[11] |
Guo Q, Zeng Z F, Yu C X, et al. Seismic random noise suppression based on the high-precision dictionary learning algorithm[J]. Geophysical and Geochemical Exploration, 2017, 41(5):907-913.
|
[12] |
罗勇, 毛海波, 杨晓海, 等. 基于双重稀疏表示的地震资料随机噪声衰减方法[J]. 物探与化探, 2018, 42(3):608-615.
|
[12] |
Luo Y, Mao H B, Yang X H, et al. Seismic random seismic noise attenuation method on basis of the double sparse representation[J]. Geophysical and Geochemical Exploration, 2018, 42(3):608-615.
|
[13] |
马继涛, 王建花, 刘国昌. 基于频率域奇异值分解的地震数据插值去噪方法研究[J]. 石油物探, 2016, 55(2):205-213.
|
[13] |
Ma J T, Wang J H, Liu G C. Seismic data noise attenuation and interpolation using singular value decomposition in frequency domain[J]. Geophysical Prospecting for Petroleum, 2016, 55(2):205-213.
|
[14] |
冯兴强, 杨长春, 龙志祎. 基于奇异值分解的f-x-y域滤波方法[J]. 物探与化探, 2005, 29(2):171-173.
|
[14] |
Feng X Q, Yang C C, Long Z Y. The filtering method in f-x-y domain based on singular value decomposition[J]. Geophysical and Geochemical Exploration, 2005, 29(2):171-173.
|
[15] |
吴志强, 曾天玖, 肖国林, 等. 南黄海低信噪比地震资料处理技术探索[J]. 物探与化探, 2014, 38(5):1029-1037.
|
[15] |
Wu Z Q, Zeng T J, Xiao G L, et al. A tentative discussion on low SNR seismic data processing technique for marine carbonate in the South Yellow Sea area[J]. Geophysical and Geochemical Exploration, 2014, 38(5):1029-1037.
|
[16] |
张恒磊, 胡哲, 胡祥云, 等. 基于反射波各向异性特征的保真去噪方法[J]. 石油地球物理勘探, 2017, 52(2):233-241.
|
[16] |
Zhang H L, Hu Z, Hu X Y, et al. Seismic fidelity de-noising with reflection anisotropy[J]. Oil Geophysical Prospecting, 2017, 52(2):233-241.
|
[17] |
刘洋, 王典, 刘财, 等. 基于非平稳相似性系数的构造导向滤波及断层检测方法[J]. 地球物理学报, 2014, 57(4):1177-1187.
|
[17] |
Liu Y, Wang D, Liu C, et al. Structure-oriented filtering and fault detected based on nonstationary similarity[J]. Chinses Journal of Geophysical, 2014, 57(4):1177-1187.
|
[18] |
尹川, 杜向东, 赵汝敏, 等. 基于倾角控制的构造导向滤波及其应用[J]. 地球物理学进展, 2014, 29(6):2818-2822.
|
[18] |
Yin C, Du X D, Zhao R M, et al. Dip steered structure oriented filter and its application[J]. Progress in Geophysics, 2014, 29(6):2818-2822.
|
[19] |
姚振岸, 孙成禹, 石小磊, 等. 基于曲波变换和各向异性扩散滤波的联合去噪技术[J]. 石油学报, 2016, 37(4):490-498.
|
[19] |
Yao Z A, Sun C Y, Shi X L, et al. A combined denoising method based on Curvelet transform and anisotropic diffusion filtering[J]. Acta Petrolei Sinica, 2016, 37(4):490-498.
|
[20] |
蔡涵鹏, 贺振华, 李亚林, 等. 基于多窗口相干性的倾角导向主分量滤波[J]. 石油地球物理勘探, 2014, 49(3):486-494.
|
[20] |
Cai H P, He Z H, Li Y L, et al. Dip-steering principal component filter using multi-window coherence scanning and interpolation[J]. Oil Geophysical Prospecting, 2014, 49(3):486-494.
|
[21] |
张尔华, 王伟, 高静怀, 等. 非线性各向异性扩散滤波器用于三维地震资料噪声衰减与结构特征增强[J]. 地球物理学进展, 2010, 25(3):866-870.
|
[21] |
Zhang E H, Wang W, Gao J H, et al. Non-linear anisotropic diffusion filtering for 3D seismic noise removal and structure enhancement[J]. Progress in Geophysics, 2010, 25(3):866-870.
|
[22] |
杨千里, 吴国忱, 赵小龙. 三维各向异性扩散滤波在地震数据处理中的应用[J]. 地球物理学进展, 2015, 30(5):2287-2292.
|
[22] |
Yang Q L, Wu G C, Zhao X L. Application of 3D anisotropic diffusion filter in seismic data processing[J]. Progress in Geophysics, 2015, 30(5):2287-2292.
|
[23] |
Marfurt K J. Robust estimates of 3D reflector dip and azimuth[J]. Geophysics, 2006, 71(4):29-40.
|
[24] |
Barnes A E. Theory of 2-D complex seismic trace analysis[J]. Geophysics, 1996, 61(1):264-272.
|
[25] |
Bakker P, Vliet L J, Verbeek P W. Edge preserving orientation adaptive filtering [C]// IEEE Computer Society Conference on Computer Vision & Pattern Recognition,IEEE-CS, 1999:535-540.
|
[26] |
王若, 张帅, 刘晓, 等. 基于F-X预测滤波的基追踪算法在雀莫错地区低信噪比资料处理中的应用[J]. 石油物探, 2018, 57(3):428-435.
|
[26] |
Wang R, Zhang S, Liu X, et al. Application of F-X prediction filtering-based basis pursuit method on seismic data with low SNR of Quemocuo Basin in Tibetan Plateau[J]. Geophysical Prospecting for Petroleum, 2018, 57(3):428-435.
|
[27] |
Luo Y, Marhoon M, Al Dossary S, et al. Edge preserving smoothing and applications[J]. The Leading Edge, 2002, 21(2):136-141.
|
[1] |
SHI Zhan-Zhan, PANG Su, WANG Yuan-Jun, CHI Yue-Long, ZHOU Qiang. Random noise attenuation of common offset gathers by f-x low-rank matrix approximation with nonconvex regularization[J]. Geophysical and Geochemical Exploration, 2022, 46(6): 1444-1453. |
[2] |
Hai-Long PENG, Jian-Wei HE, Ting REN, Dun DENG, Fan JIANG, Rui-Ming WANG, Wen-Xiang ZHANG. The application of 3D velocity modeling based on geological constraint in Qiongdongnan basin deep water complex fault block area[J]. Geophysical and Geochemical Exploration, 2018, 42(3): 537-544. |
|
|
|
|