|
|
Soil geochemical characteristics and influencing factors in Beijing Plain |
LI Huan1( ), HUANG Yong1, ZHANG Qin-Rui1, JIA San-Man1, XU Guo-Zhi2, YE Bei-Bei3, HAN Bing1 |
1. Beijing Institute of Geo-exploratin Technology,Beijing 100120,China 2. School of Gemology and Material Technology,Hebei GEO University,Shijiazhuang 050031,China 3. Nuclear No. 247 Party of Tianjin North China Geological Exploration Bureau,Tianjin 301800, China |
|
|
Abstract This study was based on soil geochemical survey data obtained in Beijing plain. The methods of mathematical statistics, factor analysis, correlation analysis and regression analysis were used to study the horizontal and vertical distribution characteristics of soil elements, and the influencing factors were discussed. The result shows that the content of CaO, MgO, Na2O, Hg, Cd, Sr, Ba, and Sn in soil is high and that of Sb, As, Th, W, Br, U, I, Mo and organic matter is low. The result of R-type factor analysis shows that factor F1 reflects the characteristics of the original soil background, factor F2, factor F4 and factor F6 reflect the influence of human activities on the distribution characteristics of soil elements, factor F3 reflects the basic information of soil parent material, and factor F5 reflects the basic characteristics of soil parent rock. The vertical distribution characteristics of elements were modeled by regression analysis. The regression coefficient R2 is 0.542~0.960, and the effect is good. From the regional scale, it is preliminarily determined that the depth of human activities on Cu, Hg, Pb and Zn is 150~200 cm, and that on N, P, S, Se, and organic matter is 50~100 cm. In general, the content of 39 elements such as Se, Bi, Li, organic matter, Mo and W in cinnamon soil is higher than that in alluvial soil.The relationship between the values of 29 elements such as As, Cd, Cr, Ni, N and B in different soil textures are in order of sandy loam<sandy clay loam<clay loam<loamy clay. The content of Cd, N, P and organic matter in cultivated soil is significantly higher than that in forest land. The content of harmful metals and nutrients in the soil of the central urban area is higher than that in the suburban area.
|
Received: 29 June 2020
Published: 29 April 2021
|
|
|
|
|
|
Distribution map of soil types in Beijing Plain
|
|
Sketch map of the sampling locationsin Beijing Plain
|
分析指标 | 规范要求 | 检出限 | 分析方法 | 分析指标 | 规范要求 | 检出限 | 分析方法 | Ag | 0.02 | 0.006 | ES | Pb | 2 | 0.0008 | ICP-OES | As | 1 | 0.011 | AFC | Rb | 10 | 1.4 | XRF | Au | 0.0003 | 0.000099 | GF-AAS | S | 30 | 7.8 | XRF | B | 1 | 0.21 | ES | Sb | 0.05 | 0.016 | AFC | Ba | 10 | 0.0006 | ICP-OES | Sc | 1 | 0.0076 | ICP-OES | Be | 0.5 | 0.0001 | ICP-OES | Se | 0.01 | 0.007 | AFC | Bi | 0.05 | 0.014 | AFC | Sn | 1 | 0.17 | ES | Br | 1 | 0.6 | XRF | Sr | 5 | 0.0493 | ICP-OES | Cd | 0.03 | 0.017 | ICP-MS | TC | 0.1* | 0.017 | EA3001 | Ce | 1 | 0.0418 | ICP-OES | Th | 2 | 0.0001 | ICP-OES | Cl | 20 | 8 | XRF | Ti | 10 | 0.1741 | ICP-OES | Co | 1 | 0.0002 | ICP-OES | Tl | 0.1 | 0.0022 | ICP-MS | Cr | 5 | 0.0003 | ICP-OES | U | 0.1 | 0.008 | ICP-MS | Cu | 1 | 0.4889 | ICP-OES | V | 5 | 0.0001 | ICP-OES | F | 20 | 0.87 | ISE | W | 0.4 | 0.0148 | ICP-MS | Ga | 2 | 0.0002 | ICP-OES | Y | 1 | 0.9 | XRF | Ge | 0.1 | 0.00062 | HG-AFS | Zn | 4 | 0.0096 | ICP-OES | Hg | 0.0005 | 0.0004 | AFC | Zr | 2 | 0.8 | XRF | I | 0.5 | 0.18 | UV | Al2 | 0.05 | 0.008 | XRF | La | 5 | 0.00004 | ICP-OES | CaO* | 0.05 | 0.0033 | ICP-OES | Li | 1 | 0.202 | ICP-OES | K2O* | 0.05 | 0.00508 | ICP-OES | Mn | 10 | 0.0003 | ICP-OES | MgO* | 0.05 | 0.0008 | ICP-OES | Mo | 0.3 | 0.016 | ICP-MS | Na2O* | 0.1 | 0.0081 | ICP-OES | N | 20 | 0.0018 | EA3000 | Si | 0.1 | 0.013 | XRF | Nb | 2 | 0.0029 | ICP-OES | TFe2 | 0.05 | 0.0026 | ICP-OES | Ni | 2 | 0.0002 | ICP-OES | Corg* | 0.1 | 0.072 | CS-3600 | P | 10 | 0.0025 | ICP-OES | pH | 0.10 | 0.03 | pH计 |
|
The analysis method and detection limit of target elements
|
属性 | 指标 | 平均值 | 中位值 | 标准离差 | 变异系数 | 最小值 | 最大值 | 全国土壤 背景值[31] | 有害重金属 (类金属)元素 | As | 8.60 | 8.56 | 2.21 | 25.7% | 2.78 | 19.6 | 11.2 | Cd | 0.166 | 0.152 | 0.074 | 44.8% | 0.058 | 0.782 | 0.097 | Cr | 59.5 | 58.6 | 11.7 | 19.6% | 26.0 | 147 | 61.0 | Cu | 26.4 | 22.2 | 36.5 | 138% | 7.80 | 805 | 22.6 | Hg | 0.175 | 0.057 | 0.679 | 388% | 0.011 | 9.13 | 0.065 | Ni | 24.9 | 24.8 | 4.60 | 18.5% | 11.5 | 52.6 | 26.9 | Pb | 26.4 | 23.8 | 15.1 | 57.2% | 14.4 | 283 | 26.0 | Zn | 81.5 | 70.7 | 119 | 146% | 43.2 | 2833 | 74.2 | 养分 指标 | C | 1.59 | 1.47 | 0.76 | 47.6% | 0.28 | 6.78 | | N | 961 | 929 | 428 | 44.5% | 166 | 4013 | | P | 878 | 781 | 407 | 46.4% | 284 | 4872 | | S | 203 | 183 | 83.0 | 40.8% | 71.0 | 848 | | 有机质 | 1.72 | 1.54 | 0.97 | 56.3% | 0.18 | 9.03 | 3.31 | 有益微量 元素 | B | 40.2 | 39.3 | 10.3 | 25.5% | 14.6 | 83.1 | 47.8 | Br | 3.37 | 3.14 | 1.63 | 48.5% | 0.03 | 19.2 | 5.40 | Cl | 80.1 | 69.0 | 54.7 | 68.3% | 24.8 | 693 | | Co | 11.2 | 11.1 | 1.96 | 17.5% | 6.09 | 21.8 | 12.7 | Ge | 1.37 | 1.34 | 0.21 | 15.6% | 0.93 | 3.11 | 1.70 | Mn | 593 | 572 | 142 | 23.9% | 320 | 2064 | 583 | Mo | 0.69 | 0.65 | 0.19 | 27.4% | 0.37 | 2.36 | 2.00 | V | 74.1 | 73.1 | 10.8 | 14.6% | 43.6 | 125 | 82.4 | 健康 元素 | F | 506 | 487 | 112 | 22.1% | 270 | 1361 | 478 | I | 2.05 | 1.80 | 1.39 | 67.9% | 0.48 | 16.0 | 3.76 | Se | 0.29 | 0.23 | 0.36 | 122% | 0.05 | 5.79 | 0.29 | 常量 元素 | Al2O3 | 12.7 | 12.6 | 1.12 | 8.9% | 9.72 | 17.1 | 12.5 | CaO | 3.92 | 3.83 | 1.93 | 49.2% | 0.85 | 11.9 | 2.16 | Fe2O3 | 4.31 | 4.24 | 0.65 | 15.0% | 2.96 | 7.17 | 4.20 | K2O | 2.47 | 2.45 | 0.29 | 11.9% | 1.25 | 3.49 | 2.24 | MgO | 2.07 | 2.05 | 0.51 | 24.6% | 0.87 | 5.76 | 1.30 | Na2O | 2.08 | 2.05 | 0.38 | 18.2% | 0.60 | 3.65 | 1.37 | SiO2 | 60.1 | 60.3 | 2.90 | 4.8% | 49.6 | 66.5 | | 稀有稀土 元素 | Ce | 66.5 | 65.5 | 9.10 | 13.7% | 35.8 | 107 | 68.4 | La | 34.7 | 34.2 | 4.70 | 13.5% | 20.6 | 55.0 | 39.7 | Sc | 9.98 | 9.99 | 1.40 | 14.1% | 5.35 | 16.7 | 11.1 | Th | 9.46 | 9.48 | 1.95 | 20.6% | 2.78 | 17.0 | 13.75 | U | 1.87 | 1.86 | 0.27 | 14.5% | 1.03 | 3.08 | 3.03 | Y | 22.6 | 22.2 | 7.6 | 33.6% | 12.2 | 187.7 | 22.9 | 其他金属 元素 | Ag | 0.129 | 0.096 | 0.123 | 95.4% | 0.043 | 0.986 | 0.132 | Au | 3.85 | 2.00 | 7.14 | 186% | 0.46 | 87.61 | | Ba | 643 | 621 | 96.0 | 14.9% | 457 | 1476 | 469 | Be | 1.87 | 1.85 | 0.25 | 13.6% | 1.20 | 2.91 | 1.95 | Bi | 0.34 | 0.29 | 0.25 | 74.5% | 0.10 | 3.23 | 0.37 | Ga | 15.4 | 15.1 | 1.60 | 10.4% | 10.2 | 21.6 | 17.5 | Li | 28.3 | 27.3 | 7.70 | 27.3% | 14.1 | 104 | 32.5 | Nb | 14.0 | 13.8 | 2.00 | 14.0% | 8.80 | 25.6 | | Rb | 90.6 | 90.0 | 9.50 | 10.5% | 57.6 | 127 | 111 | Sb | 0.93 | 0.87 | 0.72 | 77.5% | 0.32 | 16.4 | 1.21 | Sn | 3.50 | 2.72 | 4.22 | 121% | 1.50 | 59.4 | 2.60 | Sr | 285 | 280 | 96.0 | 33.6% | 77.0 | 833 | 167 | Ti | 3695 | 3629 | 533 | 14.4% | 2170 | 7519 | 3800 | Tl | 0.61 | 0.60 | 0.08 | 12.7% | 0.40 | 1.10 | 0.62 | W | 1.64 | 1.53 | 1.50 | 91.2% | 0.71 | 34.2 | 2.48 | Zr | 248 | 243 | 39.0 | 15.7% | 171 | 587 | 256 | 酸碱度 | pH | 7.56 | 7.75 | 0.62 | 8.2% | 3.73 | 8.48 | 6.70 |
|
Statistical characteristics of elements in soil
|
|
The results of the ratio of the mean value of soil elements in the Beijing Plain to the national soil background value
|
指标 | F1 | F2 | F3 | F4 | F5 | F6 | As | 0.403 | 0.075 | -0.167 | 0.293 | 0.090 | 0.183 | Cd | 0.172 | 0.543 | -0.128 | 0.402 | -0.138 | 0.071 | Cr | 0.534 | 0.195 | 0.040 | 0.071 | 0.287 | 0.057 | Cu | 0.040 | 0.086 | -0.009 | 0.943 | 0.023 | 0.069 | Hg | -0.059 | 0.297 | -0.019 | 0.057 | 0.012 | 0.738 | Ni | 0.694 | 0.147 | -0.151 | 0.106 | 0.161 | 0.075 | Pb | 0.023 | 0.249 | -0.057 | 0.755 | -0.056 | 0.486 | Zn | 0.041 | 0.098 | 0.006 | 0.967 | -0.001 | 0.021 | C | -0.042 | 0.707 | -0.376 | 0.094 | 0.242 | 0.314 | N | 0.178 | 0.815 | 0.099 | 0.013 | -0.188 | 0.145 | P | 0.043 | 0.705 | 0.03 | 0.121 | 0.019 | 0.140 | S | 0.046 | 0.699 | -0.149 | 0.062 | 0.008 | 0.284 | 有机质 | 0.123 | 0.814 | 0.028 | 0.063 | -0.114 | 0.296 | B | 0.305 | 0.095 | 0.206 | -0.032 | 0.124 | 0.024 | Br | 0.121 | 0.587 | -0.119 | 0.004 | 0.192 | 0.055 | Cl | -0.011 | 0.333 | -0.061 | 0.006 | 0.147 | 0.124 | Co | 0.825 | 0.150 | -0.135 | 0.265 | 0.029 | -0.019 | Ge | 0.253 | 0.193 | 0.052 | 0.076 | -0.286 | -0.168 | Mn | 0.625 | 0.027 | -0.045 | 0.027 | -0.087 | -0.024 | Mo | 0.248 | 0.343 | -0.246 | 0.180 | -0.132 | 0.160 | V | 0.906 | 0.057 | 0.022 | -0.007 | -0.015 | -0.030 | F | 0.482 | 0.235 | -0.442 | -0.011 | -0.213 | -0.221 | I | 0.056 | 0.350 | -0.022 | -0.013 | 0.189 | -0.184 | Se | -0.044 | 0.225 | 0.055 | 0.015 | -0.446 | 0.056 | Al2O3 | 0.639 | -0.017 | 0.001 | -0.042 | -0.483 | 0.021 | CaO | -0.213 | 0.101 | -0.644 | 0.043 | 0.595 | 0.135 | Fe2O3 | 0.858 | 0.169 | -0.165 | 0.017 | -0.117 | -0.087 | K2O | 0.176 | -0.307 | 0.177 | -0.021 | -0.610 | 0.140 | MgO | 0.131 | 0.171 | -0.735 | 0.045 | 0.265 | -0.225 | Na2O | -0.205 | -0.238 | 0.174 | -0.075 | -0.346 | -0.070 | SiO2 | -0.258 | -0.254 | 0.762 | -0.033 | -0.209 | -0.199 | Ce | 0.838 | 0.129 | 0.044 | 0.005 | -0.105 | -0.049 | La | 0.830 | 0.155 | 0.031 | 0.004 | -0.034 | 0.003 | Sc | 0.842 | -0.015 | -0.186 | 0.025 | 0.105 | -0.014 | Th | 0.582 | -0.090 | -0.089 | 0.001 | 0.252 | 0.132 | U | 0.576 | 0.335 | -0.020 | 0.064 | 0.037 | 0.136 | Y | 0.285 | 0.056 | 0.124 | -0.008 | 0.025 | -0.089 | pH | -0.050 | 0.062 | -0.354 | -0.001 | 0.708 | 0.043 | Ag | -0.024 | 0.355 | -0.110 | 0.328 | -0.114 | 0.463 | Au | -0.002 | 0.270 | -0.045 | 0.161 | -0.011 | 0.713 | Ba | 0.110 | 0.101 | -0.150 | 0.020 | -0.663 | -0.169 | Be | 0.600 | -0.155 | -0.008 | -0.020 | -0.502 | 0.089 | Bi | 0.043 | 0.520 | -0.060 | 0.317 | -0.204 | 0.032 | Ga | 0.750 | -0.061 | -0.100 | 0.010 | -0.542 | 0.041 | Li | 0.447 | 0.168 | -0.271 | -0.008 | -0.162 | -0.136 | Nb | 0.709 | -0.173 | 0.100 | 0.016 | -0.265 | -0.005 | Rb | 0.469 | -0.322 | -0.135 | 0.030 | -0.337 | 0.187 | Sb | 0.056 | 0.078 | -0.042 | 0.923 | 0.084 | 0.121 | Sn | 0.009 | 0.172 | -0.055 | 0.087 | 0.029 | 0.668 | Sr | 0.005 | 0.004 | -0.279 | 0.009 | -0.074 | 0.064 | Ti | 0.828 | 0.110 | 0.279 | -0.024 | -0.023 | -0.156 | Tl | 0.201 | -0.027 | -0.169 | 0.031 | -0.095 | 0.007 | W | 0.045 | 0.107 | 0.003 | 0.014 | 0.008 | -0.063 | Zr | 0.096 | 0.041 | 0.813 | -0.047 | 0.023 | -0.193 | 特征值 | 13.0 | 7.28 | 4.26 | 2.91 | 1.97 | 1.81 | 方差/% | 24.1 | 13.5 | 7.89 | 5.38 | 3.64 | 3.34 | 累积方差/% | 24.1 | 37.6 | 45.5 | 50.9 | 54.6 | 57.9 |
|
Factor analysis of soil elements
|
|
Diagrams of factor scores in Beijing Plain
|
指标 | As | Cd | Cr | Cu | Hg | Ni | Pb | Zn | 相关性 | -0.018 | -0.118* | -0.053 | -0.183* | -0.378* | -0.021 | -0.209* | -0.178* | 指标 | N | P | S | Se | 有机质 | Sc | Al2O3 | pH | 相关性 | -0.416* | -0.178* | -0.134* | -0.283* | -0.406* | -0.029 | -0.030 | 0.171* |
|
Correlation between soil element content and depth
|
指标 | 模型摘要 | 参数估计值 | 模型类型 | R2 | F | df1 | df2 | Sig. | b0 | b1 | Cd | 对数函数 | 0.507 | 9.26 | 1 | 9 | 1.39×10-2 | 0.163 | -7.61×10-3 | Cu | 对数函数 | 0.605 | 13.8 | 1 | 9 | 4.85×10-3 | 27.0 | -1.29 | Hg | 幂函数 | 0.960 | 213 | 1 | 9 | 1.42×10-7 | 0.089 | -0.274 | Pb | 对数函数 | 0.808 | 37.8 | 1 | 9 | 1.69×10-4 | 26.6 | -1.14 | Zn | 对数函数 | 0.683 | 19.3 | 1 | 9 | 1.72×10-3 | 77.4 | -2.58 | N | 对数函数 | 0.957 | 199 | 1 | 9 | 1.91×10-7 | 880 | -102 | P | 逆函数 | 0.836 | 45.9 | 1 | 9 | 8.10×10-5 | 538 | 3188 | S | 对数函数 | 0.542 | 10.6 | 1 | 9 | 9.82×10-3 | 186 | -8.02 | Se | 对数函数 | 0.749 | 26.9 | 1 | 9 | 5.77×10-4 | 0.232 | -2.35×10-2 | 有机质 | 对数函数 | 0.955 | 189 | 1 | 9 | 2.37×10-7 | 1.52 | -0.192 | pH | 线性函数 | 0.840 | 47.3 | 1 | 9 | 7.20×10-5 | 7.69 | 6.07×10-4 |
|
Model summary and parameter estimation statistics
|
|
Function model fitting of elements in soil
|
|
Comparison of element contents in different soil types
|
|
Comparison of element contents in different soil textures
|
|
Comparison of element contents in different land use patterns
|
|
Comparison of soil element contents in different planning areas
|
[1] |
奚小环, 李敏. 现代勘查地球化学科学体系概论:“十二五”期间勘查成果评述[J]. 物探与化探, 2017,41(5):779-793.
|
[1] |
Xi X H, Li M. Summary of modern exploration geochemistry scientific system:Commentary on exploration achievements obtained in the period of “12th Five-Year Plan”[J]. Geophysical and Geochemical Exploration, 2017,41(5):779-793.
|
[2] |
代杰瑞, 庞绪贵, 喻超, 等. 山东省东部地区土壤地球化学特征及污染评价[J]. 中国地质, 2011,38(5):1387-1395.
|
[2] |
Dai J R, Pang X G, Yu C, et al. Geochemical features and contamination assessment of soil elements in east Shandong Province[J]. Geology in China, 2011,38(5):1387-1395.
|
[3] |
廖蕾, 刘还林, 苏美霞, 等. 内蒙古自治区包头市土壤地球化学特征与环境评价[J]. 地质与勘探, 2012,48(4):799-806.
|
[3] |
Liao L, Liu H L, Su M X, et al. Geochemical characteristics of the soil from Baotou City,Inner Mongolia and its environmental assessment[J]. Geology and Exploration, 2012,48(4):799-806.
|
[4] |
庞绪贵, 高宗军, 边建朝, 等. 山东省黄河下游流域地方病与生态地球化学环境相关性研究[J]. 中国地质, 2010,37(3):824-830.
|
[4] |
Pang X G, Gao Z J, Bian J C, et al. The correlation between endemic diseases and eco-geochemical environment in the lower Yellow River basin, Shandong Province[J]. Geology in China, 2010,37(3):824-830.
|
[5] |
高彦辉, 孙殿军. 生物地球化学性地方病研究——古老又崭新的领域[J]. 中华疾病控制杂志, 2018,22(2):107-108,121.
|
[5] |
Gao Y H, Sun D J. Study on biogeochemical diseases, ancient and new field[J]. Chinese Journal of Disease Control & Prevention, 2018,22(2):107-108,121.
|
[6] |
文帮勇, 张涛亮, 李西周, 等. 江西龙南地区富硒土壤资源开发可行性研究[J]. 中国地质, 2014,41(1):256-263.
|
[6] |
Wen B Y, Zhang T L, Li X Z, et al. A feasibility study of selenium-rich soil development in Longnan County of Jiangxi Province[J]. Geology in China, 2014,41(1):256-263.
|
[7] |
吴俊. 福建省寿宁县土壤硒分布特征及影响因素[J]. 中国地质, 2018,45(6):1167-1176.
|
[7] |
Wu J. The distribution of soil selenium in Shouning County of Fujian Province and its influencing factors[J]. Geology in China, 2018,45(6):1167-1176.
|
[8] |
冯辉, 张学君, 张群, 等. 北京大清河流域生态涵养区富硒土壤资源分布特征和来源解析[J]. 岩矿测试, 2019,38(6):693-704.
|
[8] |
Feng H, Zhang X J, Zhang Q, et al. Distribution characteristics and sources identification of selenium-rich soils in the ecological conservation area of the Daqinghe River Watershed, Beijing[J]. Rock and Mineral Analysis, 2019,38(6):693-704.
|
[9] |
童倩倩, 何腾兵, 高雪, 等. 贵州省耕地土壤的养分状况[J]. 贵州农业科学, 2011,39(2):82-84.
|
[9] |
Tong Q Q, He T B, Gao X, et al. Soil nutrients of arable land in Guizhou[J]. Guizhou Agricultural Sciences, 2011,39(2):82-84.
|
[10] |
严玉梅, 李水利, 李茹, 等. 陕西省耕地土壤养分现状与分布特征[J]. 土壤通报, 2019,50(6):1298-1305.
|
[10] |
Yan Y M, Li S L, Li R, et al. Current situation and distribution characteristics of soil nutrients in cultivated land of Shaanxi Province[J]. Chinese Journal of Soil Science, 2019,50(6):1298-1305.
|
[11] |
丛源, 郑萍, 陈岳龙, 等. 北京农田生态系统土壤重金属元素的生态风险评价[J]. 地质通报, 2008(5):681-688.
|
[11] |
Cong Y, Zheng P, Chen Y L, et al. Ecological risk assessments of heavy metals in soils of the farmland ecosystem of Beijing,China[J]. Geological Bulletin of China, 2008(5):681-688.
|
[12] |
王彬武, 李红, 蒋红群, 等. 北京市耕地土壤重金属时空变化特征初步研究[J]. 农业环境科学学报, 2014,33(7):1335-1344.
|
[12] |
Wang B W, Li H, Jiang H Q, et al. Spatio-temporal variation of soil heavy metals in agricultural land in Beijing, China[J]. Journal of Agro-Environment Science, 2014,33(7):1335-1344.
|
[13] |
吴琼, 邹国元, 史振鹏, 等. 北京东南郊农田土壤养分状况及空间分布特征[J]. 北方园艺, 2015(23):173-178.
|
[13] |
Wu Q, Zou G Y, Shi Z P, et al. Soil nutrient status and spatial distribution characteristics of farmland in Beijing east-south suburb[J]. Northern Horticulture, 2015(23):173-178.
|
[14] |
孔祥斌, 胡莹洁, 李月, 等. 北京市耕地表层土壤有机碳分布及其影响因素[J]. 资源科学, 2019,41(12):2307-2315.
|
[14] |
Kong X B, Hu Y J, Li Y, et al. Distribution and influencing factors of soil organic carbon of cultivated land topsoil in Beijing[J]. Resources Science, 2019,41(12):2307-2315.
|
[15] |
孙春媛, 赵文吉, 郑晓霞, 等. 北京城区土壤重金属空间分布及与降尘的关联性分析[J]. 中国科技论文, 2016,11(9):1035-1040.
|
[15] |
Sun C Y, Zhao W J, Zheng X X, et al. Analysis on the spatial distribution of heavy metal in surface soil and the relationships to atmospheric dust in Beijing urban area[J]. China Sciencepaper, 2016,11(9):1035-1040.
|
[16] |
董士伟, 李红, 孙丹峰, 等. 北京市大兴区土壤养分空间结构及影响因素分析[J]. 水土保持研究, 2015,22(2):32-35.
|
[16] |
Dong S W, Li H, Sun D F, et al. Analysis on spatial structure and influence factor of soil nutrients in Daxing District of Beijing[J]. Research of Soil and Water Conservation, 2015,22(2):32-35.
|
[17] |
王淑英, 于同泉, 王建立, 等. 北京市平谷区土壤有效微量元素含量的空间变异特性初步研究[J]. 中国农业科学, 2008(1):129-137.
|
[17] |
Wang S Y, Yu T Q, Wang J L, et al. Preliminary study on spatial variability and distribution of soil available microelements in Pinggu District of Beijing[J]. Scientia Agricultura Sinica, 2008(1):129-137.
|
[18] |
韩平, 王纪华, 陆安祥, 等. 北京顺义区土壤重金属分布与环境质量评价[J]. 农业环境科学学报, 2012,31(1):106-112.
|
[18] |
Han P, Wang J H, Lu A X, et al. Distribution and environment quality evaluation of heavy metals in soil in Shunyi of Beijing, China[J]. Journal of Agro-Environment Science, 2012,31(1):106-112.
|
[19] |
杨雪玲, 刘慧琳, 葛畅, 等. 北京平原区土壤镉空间分布特征及健康风险评估[J]. 江苏农业科学, 2019,47(20):260-266.
|
[19] |
Yang X L, Liu H L, Ge C, et al. Spatial distribution characteristics and health risk assessment of Cd in soil in Beijing plain[J]. Jiangsu Agricultural Sciences, 2019,47(20):260-266.
|
[20] |
郭莉, 杨忠芳, 阮起和, 等. 北京市平原区土壤中硒的含量和分布[J]. 现代地质, 2012,26(5):859-864.
|
[20] |
Guo L, Yang Z F, Ruan Q H, et al. Content and distribution of selenium in soil of Beijing Plain[J]. Geoscience, 2012,26(5):859-864.
|
[21] |
蔡向民, 栾英波, 郭高轩, 等. 北京平原第四系的三维结构[J]. 中国地质, 2009,36(5):1021-1029.
|
[21] |
Cai X M, Luan Y B, Guo G X, et al. 3D Quaternary geological structure of Beijing plain[J]. Geology in China, 2009,36(5):1021-1029.
|
[22] |
奚小环, 陈国光, 张德存, 等. DZ/T 0258—2014 多目标区域地球化学调查规范(1∶250000)[S].
|
[22] |
Xi X H, Chen G G, Zhang D C, et al. DZ/T 0258—2014 Specification of multi-purpose regional geochemical survey(1∶250000)[S].
|
[23] |
DD2005—03 生态地球化学评价样品分析技术要求[S].
|
[23] |
DD2005—03 Technical requirements for analysis of ecological geochemical evalution samples[S].
|
[24] |
孙慧. 概率论与数理统计[M]. 上海: 同济大学出版社, 2017.
|
[24] |
Sun H. Probability theory and mathematical statistics[M]. Shanghai: Tongji University Press, 2017.
|
[25] |
焦伟, 陈亚宁, 李稚, 等. 基于多种回归分析方法的西北干旱区植被NPP遥感反演研究[J]. 资源科学, 2017,39(3):545-556.
|
[25] |
Jiao W, Chen Y N, Li Z, et al. Inversion of net primary productivity in the arid region of Northwest China based on various regressions[J]. Resources Science, 2017,39(3):545-556.
|
[26] |
赵曰强, 安实, 麦强, 等. 基于线性非线性回归分析的防空导弹费用建模[J]. 现代防御技术, 2019,47(2):101-108.
|
[26] |
Zhao Y Q, An S, Mai Q, et al. Cost modeling of air defense missile based on linear and nonlinear regression analysis[J]. Modern Defence Technology, 2019,47(2):101-108.
|
[27] |
陈平雁. SPSS 8.0统计软件应用教程[M]. 北京: 人民军医出版社, 2000.
|
[27] |
Chen P Y. SPSS 8.0 statistical software application course[M]. Beijing: People's Military Medical Press, 2000.
|
[28] |
刘永红, 倪中应, 谢国雄, 等. 浙西北丘陵区农田土壤微量元素空间变异特征及影响因子[J]. 植物营养与肥料学报, 2016,22(6):1710-1718.
|
[28] |
Liu Y H, Ni Z Y, Xie G X, et al. Spatial variability and impacting factors of trace elements in hilly region of cropland in northwestern Zhejiang Province[J]. Journal of Plant Nutrition and Fertilizer, 2016,22(6):1710-1718.
|
[29] |
祝修高, 李小梅, 沙晋明. 福州市土壤Zn、Pb元素空间变异特征及影响因子分析[J]. 福建师范大学学报:自然科学版, 2016,32(4):99-104.
|
[29] |
Zhu X G, Li X M, Sha J M. Spatial variability and influencing factors of Zn and Pb in soil in Fuzhou City[J]. Journal of Fujian Teachers University:Natural Science, 2016,32(4):99-104.
|
[30] |
王雪梅, 柴仲平, 毛东雷, 等. 库车县土壤微量元素空间变异特征分析[J]. 西南农业学报, 2015,28(4):1746-1751.
|
[30] |
Wang X M, Chai Z P, Mao L D, et al. Analysis of spatial variability characteristics of soil trace elements in Kuqa County[J]. Southwest China Journal of Agricultural Sciences, 2015,28(4):1746-1751.
|
[31] |
中国环境监测总站. 中国土壤元素背景值[M]. 北京: 中国环境科学出版社, 1990.
|
[31] |
China National Environmental Monitoring Centre. Background values of soil elements in China[M]. Beijing: China Environmental Science Press, 1990.
|
[32] |
袁胜元, 李长安. 基于因子分析的江汉盆地第四纪沉积物源讨论[J]. 现代地质, 2014,28(5):980-985.
|
[32] |
Yuan S Y, Li C A. Study on sediment provenances in Jianghan Basin since Quaternary based on factorial analysis[J]. Geoscience, 2014,28(5):980-985.
|
[33] |
路玉林, 戴圣潜, 李运怀, 等. 安徽宁国市山核桃农业地质环境的因子分析研究[J]. 土壤通报, 2006(6):1203-1206.
|
[33] |
Lu Y L, Dai S Q, Li Y H, et al. Factor analysis of agro-geological environment of carya cathayensis plantation in Ningguo City,Anhui Province[J]. Chinese Journal of Soil Science, 2006(6):1203-1206.
|
[34] |
陈国光, 梁晓红, 张洁, 等. 丘陵区土地质量地球化学调查方法技术——以服务赣州六县精准脱贫土地质量地球化学调查为例[J]. 物探与化探, 2020,44(3):463-469.
|
[34] |
Chen G G, Liang X H, Zhang J, et al. Geochemical survey method of land quality in hilly areas: A case study of the geochemical survey of land quality in Ganzhou[J]. Geophysical and Geochemical Exploration, 2020,44(3):463-469.
|
[35] |
蔡向民, 张磊, 郭高轩, 等. 北京平原地区第四纪地质研究新进展[J]. 中国地质, 2016,43(3):1055-1066.
|
[35] |
Cai X M, Zhang L, Guo G X, et al. New progress in the study of Quaternary geology in Beijing Plain[J]. Geology in China, 2016,43(3):1055-1066.
|
[36] |
陈国光, 周国华, 梁晓红, 等. 土地质量地球化学调查成果应用于永久基本农田划分方法技术[J]. 地质通报, 2019,38(Z1):437-442.
|
[36] |
Chen G G, Zhou G H, Liang X H, et al. The application of land quality geochemical survey results to permanent basic farmland classification technology[J]. Geological Bulletin of China, 2019,38(Z1):437-442.
|
[37] |
彭敏, 李括, 刘飞, 等. 东北平原区地块尺度土地质量地球化学评价合理采样密度研究[J]. 物探与化探, 2019,43(2):338-350.
|
[37] |
Peng M, Li K, Liu F, et al. Reasonable sampling density for land parcel scale geochemical assessment on land quality in northeast China Plain[J]. Geophysical and Geochemical Exploration, 2019,43(2):338-350.
|
[38] |
贺灵, 刘占元, 周国华, 等. 土地质量地球化学评价成果与若干问题探讨:以浙江省金华市汤溪镇为例[J]. 现代地质, 2019,33(1):152-160.
|
[38] |
He L, Liu Z Y, Zhou G H, et al. Land quality geochemistry evaluation and discussion on some issues:A case in Tangxi Town,Jinhua City,Zhejiang Province[J]. Geoscience, 2019,33(1):152-160.
|
[39] |
邓勃, 秦建侯, 李廷芳. 影响北京地区土壤元素背景值的因素分析[J]. 环境科学学报, 1986(4):446-454.
|
[39] |
Deng B, Qin J H, Li T F. Analysis of factors affecting soil background contents of metal elements in Beijing area[J]. Acta Scientiae Circumstantiae, 1986(4):446-454.
|
[40] |
李廷芳. 影响北京土壤元素背景值的成土因素[J]. 北京师范学院学报:自然科学版, 1992(1):78-83.
|
[40] |
Li T F. Soil forming factors affecting soil background contents of metal elements in Beijing area[J]. Journal of Capital Normal University(Natural Science Edition), 1992(1):78-83.
|
[41] |
李欢, 徐国志, 孙璐, 等. 化探综合异常图定量编制方法及应用[J]. 地质通报, 2019,38(6):1062-1070.
|
[41] |
Li H, Xu G Z, Sun L, et al. A quantitative method for integrated anomaly map of geochemical prospecting and application[J]. Geological Bulletin of China, 2019,38(6):1062-1070.
|
[42] |
王学求, 张必敏, 刘雪敏. 纳米地球化学:穿透覆盖层的地球化学勘查[J]. 地学前缘, 2012,19(3):101-112.
|
[42] |
Wang X Q, Zhang B M, Liu X M. Nanogeochemistry:Deep-penetrating geochemical exploration through cover[J]. Earth Science Frontiers, 2012,19(3):101-112.
|
[43] |
卢新哲, 谷安庆, 张言午, 等. 天台耕地土壤重金属污染及生态风险评价[J]. 合肥工业大学学报:自然科学版, 2019,42(7):978-987.
|
[43] |
Lu X Z, Gu A Q, Zhang Y W, et al. Heavy metal pollution and ecological risk assessment of cultivated soils in Tiantai County of Zhejiang Province,China[J]. Journal of Hefei University of Technology:Natural Science, 2019,42(7):978-987.
|
[44] |
吴洋, 杨军, 周小勇, 等. 广西都安县耕地土壤重金属污染风险评价[J]. 环境科学, 2015,36(8):2964-2971.
|
[44] |
Wu Y, Yang J, Zhou X Y, et al. Risk assessment of heavy metal contamination in farmland soil in Du'an autonomous county of Guangxi Zhuang Autonomous Region, China[J]. Environmental Science, 2015,36(8):2964-2971.
|
[45] |
车建明, 张春玲, 付意成, 等. 北京市工业用水特征与行业发展趋势分析[J]. 中国水利水电科学研究院学报, 2015,13(2):111-116.
|
[45] |
Che J M, Zhang C L, Fu Y C, et al. Analysis of industry development's trend and its water use characteristics in Beijing[J]. Journal of China Institute of Water Resources and Hydropower Research, 2015,13(2):111-116.
|
[46] |
魏晓洁. 首都经济圈背景下的北京工业发展路径研究[J]. 北京社会科学, 2012(3):21-25.
|
[46] |
Wei X J. Research on Beijing industrial development path in the backdrop of the capital economic circle[J]. Social Sciences of Beijing, 2012(3):21-25.
|
[47] |
田春晖, 杨若杼, 古丽扎尔·依力哈木, 等. 南京市大气降尘重金属污染水平及风险评价[J]. 环境科学, 2018,39(7):3118-3125.
|
[47] |
Tian C H, Yang R Z, Gulizhaer Yilihamu, et al. Pollution levels and risk assessment of heavy metals from atmospheric deposition in Nanjing[J]. Chinese Journal of Environmental Science, 2018,39(7):3118-3125.
|
[1] |
JIANG Bing, LIU Yang, WU Zhen, ZHANG De-Ming, SUN Zeng-Bing, MA Jian. Geochemical characteristics of fluorine in irrigation water and soils in the Gaomi area, Shandong Province, China[J]. Geophysical and Geochemical Exploration, 2023, 47(5): 1348-1353. |
[2] |
NAN Zhe, WANG Lin-Shi, HOU Xu, ZHAI Zheng-Bo, WANG Yang, LIU Yang. Geological and geochemical characteristics and prospecting potential of rare element and rare earth element deposits in Saima alkaline complex[J]. Geophysical and Geochemical Exploration, 2023, 47(3): 670-680. |
|
|
|
|