|
|
The application of in-situ stress prediction based on seismic data to shale gas development:A case study of Nanchuan(south Sichuan) area |
LIU Hao-Juan( ) |
Research Institute of Explaratian and Development,SINOPEC East China Oil & Gas Company,Nanjing 210011,China |
|
|
Abstract Shale gas reservoirs have the characteristics of low porosity and low permeability.The large-scale exploitation of shale gas requires the reconstruction of shale reservoirs through horizontal well fracturing technology.Available data indicate that,when the horizontal shale gas well azimuth is approximately perpendicular to the maximum horizontal principal stress,and the coefficient of difference in horizontal in-situ stress is small,it is favorable for fracturing to form network fractures and improve the effect of reservoir reconstruction.An in-situ stress prediction model was established for the Nanchuan area.On the basis of detailed 3D seismic interpretation and 3D seismic prestack inversion,the regional adaptive parameters were selected by using well data simulation,and the 3D simulation of the in-situ stress field was performed to predict the direction of the maximum horizontal principal stress,the direction of the minimum horizontal principal stress and the coefficient of in-situ stress difference.Through an analysis of the regional stress mechanism and the interpretation of the induced joint and the analysis of the application,the reliability of the in-situ seismic prediction results was verified,and the important role of in-situ stress analysis in shale gas development was proved.
|
Received: 04 March 2020
Published: 27 July 2021
|
|
|
|
|
|
In-situ stress prediction process
|
|
Formation pressure prediction based on Eaton method a—normal compaction trend line of W3;b—measured pressure point and predicted pressure curve of W3
|
|
Reflection structural characteristics in O3w of Nanchuan area
|
|
Faults and maximum horizontal principal stress direction in O3w of Nanchuan area
|
井名 | 成像测井监测最 大主应力方位/(°) | 三维预测最大 主应力方位/(°) | 差异值/(°) | 误差百 分比/% | W1 | 60 | 65 | 5 | 8.3 | W3 | 105 | 108 | 3 | 2.9 | W4 | 115 | 120 | 5 | 4.3 | W5 | 110 | 116 | 6 | 5.5 | W6 | 135 | 135 | 0 | 0 |
|
Comparison of FMI interpretation results and 3D prediction of horizontal maximum principal stress direction in O3w of Nanchuan area
|
|
Maximum horizontal principal stress in O3w of Nanchuan area
|
井名 | 深度/m | 单井计算水平最大 主应力/MPa | 三维预测水平最大 主应力/MPa | 差异值/MPa | 差异百分比/% | W1 | 2966~2996 | 68 | 63.893 | -4.107 | 6.039 | W2 | 3441.2~3471.2 | 77 | 74.093 | -2.907 | 3.775 | W3 | 3722~3752 | 74 | 74.227 | 0.227 | 0.306 | W4 | 3374.1~3404.1 | 75.2 | 72.427 | -2.773 | 3.688 | W5 | 2668.5~2698.5 | 56.76 | 57.360 | 0.600 | 1.057 | W6 | 2771.5~2801.5 | 62.3 | 63.893 | 1.593 | 2.558 |
|
FMI interpretation results and 3D prediction of horizontal maximum principal stress in O3w of Nanchuan area
|
井名 | 深度/m | 单井计算水平最小 主应力/MPa | 三维预测水平最小 主应力/MPa | 误差值/MPa | 误差百分比/% | W1 | 2966~2996 | 62 | 57.929 | -4.07143 | 6.57 | W2 | 3441.2~3471.2 | 64 | 62.929 | -1.07143 | 1.67 | W3 | 3722~3752 | 67 | 72.786 | 5.78571 | 8.64 | W4 | 3374.1~3404.1 | 68.1 | 65.000 | -3.10000 | 4.55 | W5 | 2668.5~2698.5 | 50.91 | 50.486 | -0.42429 | 0.83 | W6 | 2771.5~2801.5 | 53.3 | 55.714 | 2.41429 | 4.53 |
|
FMI interpretation results and 3D prediction of horizontal minimum principal stress in O3w of Nanchuan area
|
|
Differential horizontal stress ratio in O3w of Nanchuan area
|
|
The effect of horizontal well orientation on productivity
|
|
Relationship between orizontal well orientation and fracture pressure
|
|
The effect of horizontal stress on sand proportion
|
|
The effect of horizontal stress on productivity
|
|
Relationship between horizontal stress difference ratio and gas production of each well
|
|
Relationship between horizontal stress difference ratio and gas production in each fracturing interval of wells
|
[1] |
印兴耀, 马妮, 马正乾, 等. 地应力预测技术的研究现状与进展[J]. 石油物探, 2018, 57(4):488-504.
|
[1] |
Yin X Y, Ma N, Ma Z Q, et al. Review of in-situ stress prediction technology[J]. Geophysical Prospecting for Petroleum, 2018, 57(4):488-504.
|
[2] |
马妮, 印兴耀, 宗兆云, 等. 曲率属性在地应力地震预测中的应用[J]. 物探化探计算技术, 2018, 40(2):182-188.
|
[2] |
Ma N, Yin X Y, Zong Z Y, et al. The application of curvature attributes to in-situ stress seismic prediction[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2018, 40(2):182-188.
|
[3] |
Hunt L, Reynolds S, Hadley S, et al. Causal fracture prediction:curvature,stress,and geomechanics[J]. The Leading Edge, 2011, 30(11):1274-1286.
|
[4] |
Gray D, Anderson P, Logel J, et al. Estimation of stress and geomechanical properties using 3D seismic data[J]. First Break, 2012, 30(3):59-68.
|
[5] |
张广智, 陈娇娇, 陈怀震, 等. 基于岩岩石物理等效模型的地应力预测方法研究[J]. 地球物理学报, 2015, 58(6):2112-2122.
|
[5] |
Zhang G Z, Chen J J, Chen H Z, et al. Prediction for in-situ formation stress of shale based on rock physics equivalent model[J]. Chinese Journal of Geophysics, 2015, 58(6):2112-2122.
|
[6] |
齐晴. 地应力预测技术在页气水平井开发中的应用[J]. 地球物理学进展, 2018, 33(3):1117-1122.
|
[6] |
Qi Q. Application of in-suit stress prediction technology in shale gas horizontal wells development[J]. Progress in Geophysics, 2018, 33(3):1117-1122.
|
[7] |
李文成, 扶喆一. 焦石坝地区页岩各向异性及其影响的分析研究[J]. 物探与化探, 2019, 43(2):266-272.
|
[7] |
Li W C, Fu Z Y. The anisotropic characteristics and impact of organicrich shale:A Jiaoshiba demonstration[J]. Geophysical and Geochemical Exploration, 2019, 43(2):266-272.
|
[8] |
陈峥嵘. 页岩横观各向同性储层水平井井周应力预测模型[J]. 科学技术与工程, 2017, 17(24):26-31.
|
[8] |
Chen Z R. Prediction model of borehole stress of horizontal well in transversely isotropy shale gas formation[J]. Science Technology and Engineering, 2017, 17(24):26-31.
|
[9] |
Iverson W P. Closure stress calculations in anisotropic formations[J]. Society of Petroleum Engineers, 1995.DOI: 10.2118/29598-MS.
|
[10] |
邓金根, 陈峥嵘, 耿亚楠, 等. 页岩储层地应力预测模型的建立和求解[J]. 中国石油大学学报:自然科学版, 2013, 37(6):59-64.
|
[10] |
Deng J G, Chen Z R, Geng Y N, et al. Prediction model for in-situ formatiom stress in shale reservoirs[J]. Journal of China University of Petroleum, 2013, 37(6):59-64.
|
[11] |
李志明, 张金珠. 地应力与油气勘探开发[M]. 北京: 石油工业出版社, 1997:311-410.
|
[11] |
Li Z M, Zhang J Z. In-situ stress and petroleum exploration &development[M]. Beijing: Petroleum Industry Press, 1997:311-410.
|
[12] |
金宠, 李三忠, 王岳军, 等. 雪峰山陆内复合构造系统印支—燕山期构造穿时递进特征[J]. 石油与天然气地质, 2009, 30(5):598-607.
|
[12] |
Jin C, Li S Z, Wang Y J, et al. Diachronous and progressive deformation during the Indosinian-Yanshanian movements of the Xuefeng Mountain intracontinental composite tectonic system[J]. Oil & Gas Geology, 2009, 30(5):598-607.
|
[13] |
余晓宇, 陈洁, 张士万, 等. 焦石坝地区中、古生界构造特征及其页岩气地质意义[J]. 石油与天然气地质, 2016, 37(6):828-837.
|
[13] |
She X Y, Chen J, Zhang S W, et al. Tectonic characteristics and their shale gas geological significance of the Mesozoic-Paleozoic in Jiaoshiba area, the Sichuan Basin[J]. Oil & Gas Geology, 2016, 37(6):828-837.
|
[14] |
唐永, 周立夫, 陈孔全, 等. 川东南构造应力场地质分析及构造变形成因机制讨论[J]. 地质论评, 2018, 64(1):15-28.
|
[14] |
Tang Y, Zhou L F, Chen K Q, et al. Analysis of tectonic stress field of Southeastern Sichuan and formation mechanism of tectonic deformation[J]. Geological Review, 2018, 64(1):15-28.
|
[15] |
李旺, 李连崇, 唐春安. 水平井平行裂缝间诱导应力干扰机制的数值模拟研究[J]. 天然气地球科学, 2016, 27(11):2043-2053.
|
[15] |
Li W, Li L C, Tang C A. Numerical simulation research on mechanism of induced stress perturbation between parallel fractures in horizontal wells[J]. Natural Gas Geoscience, 2016, 27(11):2043-2053.
|
[16] |
张烨, 潘林华, 周彤, 等. 页岩水力压裂裂缝扩展规律实验研究[J]. 科学技术与工程, 2015, 15(5):11-16.
|
[16] |
Zhang Y, Pan L H, Zhou T, et al. A study of hydraulic fracture propagation for shale fracturing[J]. Science Technology and Engineering, 2015, 15(5):11-16.
|
[17] |
王志刚. 涪陵焦石坝地区页岩气水平井压裂改造实践与认识[J]. 石油与天然气地质, 2014, 35(3):425-430.
|
[17] |
Wang Z G. Practice and cognition of shale gas horizontal well fracturing stimulation in Jiaoshiba of Fuling area[J]. Oil & Gas Geology, 2014, 35(3):425-430.
|
[18] |
蒲洪江, 何兴贵, 黄霞. 四川盆地元坝地区陆相储层高破裂压力成因与技术对策[J]. 天然气工业, 2014, 34(7):65-70.
|
[18] |
Pu H J, He X G, Huang X. Technological strategies continental reservoirs for in and causes of high fracture pressure of the Yuanba Gas Field,Sichuan Basin[J]. Natural Gas Industry, 2014, 34(7):65-70.
|
[19] |
盛秋红, 李文成. 泥页岩可压性评价方法及其在焦石坝地区的应用[J]. 地球物理学进展, 2016, 31(4):1473-1479.
|
[19] |
Sheng Q H, Li W C. Evaluation method of shale fracability and its application in Jiaoshiba area[J]. Progress in Geophysics, 2016, 31(4):1473-1479.
|
[20] |
朱维耀, 马东旭, 朱华银, 等. 页岩储层应力敏感性及其对产能影响[J]. 天然气地球科学, 2016, 27(5):892-897.
|
[20] |
Zhu W Y, Ma D X, Zhu H Y, et al. Stress sensitivity of shale gas reservoir and its influence on productivity[J]. Natural Gas Geoscience, 2016, 27(5):892-897.
|
[21] |
唐颖, 邢云, 李乐忠, 等. 页岩储层可压裂性影响因素及评价方法[J]. 地学前缘, 2012, 19(5):356-363.
|
[21] |
Tang Y, Xing Y, Li L Z, et al. Influence factors and evaluation methods of the gas shale fracability[J]. Earth Science Frontiers, 2012, 19(5):356-363.
|
[22] |
沈骋, 任岚, 赵金洲, 等. 页岩储集层综合评价因子及其应用——以四川盆地东南缘焦石坝地区奥陶系五峰组—志留系龙马溪组为例[J]. 石油勘探与开发, 2017, 44(4):649-658.
|
[22] |
Shen C, Ren L, Zhao J Z, et al. A comprehensive evaluation index for shale reservoirs and its application:A case study of the Ordovician Wufeng Formation to Silurian Longmaxi Formation in southeastern margin of Sichuan Basin,SW China[J]. Petroleum Exploration and Development, 2017, 44(4):649-658.
|
[1] |
HU Zhi-Fang, LUO Wei-Feng, WANG Sheng-Jian, KANG Hai-Xia, ZHOU Hui, ZHANG Yun-Xiao, ZHAN Shao-Quan. Application of wide field electromagnetic method in the fracturing monitoring of well Anye-2[J]. Geophysical and Geochemical Exploration, 2023, 47(3): 718-725. |
[2] |
YU Chang-Heng, ZHENG Jian, ZHANG Xu-Lin, ZHOU Hao, WANG An-Ping, LIU Lei, LI Yi. Application of the integrated engineering geophysical exploration technology in the predrilling stage of shale gas well platforms in southern Sichuan Province[J]. Geophysical and Geochemical Exploration, 2023, 47(1): 99-109. |
|
|
|
|