|
|
The application of deep learning to the shale gas content prediction in Nanchuan(South Sichuan) |
ZHANG Yong1( ), MA Xiao-Dong1, LI Yan-Jing1, CAI Jing-Shun2 |
1. Research Institute of Exploration and Development,East China Branch of SINOPEC,Nanjing 210005,China 2. Sichuan Baohua Xinsheng Oil & Gas Operation Service Co. Ltd.,Chengdu 610000,China |
|
|
Abstract Gas content is one of the main parameters to evaluate whether shale gas can be enriched to obtain high-yield.The higher the gas content,the more favorable for shale gas wells to obtain high-yield.Traditional gas content seismic prediction methods are based on single-attribute,multi-attribute linear fitting or simple neural networks,and have low accuracy.The gas content prediction method is based on deep neural network.Through optimizing seismic attributes,optimizing the solution method and choosing the appropriate number of hidden layers,the number of neurons,and the number of iterations,a prediction model can be established to predict the gas content of shale,thus effectively improving the prediction accuracy of shale gas content and providing support for the geological evaluation of shale gas research areas and the deployment of shale gas horizontal wells.
|
Received: 03 November 2020
Published: 27 July 2021
|
|
|
|
|
|
Structure of deep neural network
|
|
Structural characteristics map of Nanchuan area
|
|
Comprehensive histogram of the first section of Wufeng-Longmaxi Formation in Well A
|
|
Attribute number optimization diagram
|
|
Superimposed graph of actual measured curve and predicted curve
|
|
The gas content prediction profile of different types of prediction methods
|
|
The average gas content and structure superposition map of high-quality shale section
|
[1] |
赵金洲, 沈骋, 任岚, 等. 页岩储层不同赋存状态气体含气量定量预测——以四川盆地焦石坝页岩气田为例[J]. 天然气工业, 2017, 37(4):27-33.
|
[1] |
Zhao J Z, Shen C, Ren L, et al. Quantitative prediction of gas contents in different occurrence states of shale reservoirs:A case study of the Jiaoshiba shale gasfield in the Sichuan Basin[J]. Natural Gas Industry, 2017, 37(4):27-33.
|
[2] |
郭旭升, 尹正武, 李金磊. 海相页岩含气量地震定量预测技术及其应用——以四川盆地焦石坝地区为例[J]. 石油地球物理勘探, 2015, 50(1):144-149.
|
[2] |
Guo X S, Yin Z W, Li J L. Quantitative seismic prediction of marine shale gas content,a case study in Jiaoshiba area,Sichuan basin[J]. Oil Geophysical Prospecting, 2015, 50(1):144-149.
|
[3] |
陈超, 屈大鹏, 王明飞, 等. 川东南焦石坝地区海相泥页岩含气量预测方法探讨[J]. 石油物探, 2016, 55(4):597-605.
|
[3] |
Chen C, Qu D P, Wang M F, et al. Prediction method of gas content in marine mud shale at JSB area in southeast Sichuan Basin[J]. Geophysical Prospecting for Petroleum, 2016, 55(4):597-605.
|
[4] |
马波, 黄天俊, 邹定永, 等. 海相页岩含气量地震定量预测方法研究——以川南长宁地区为例[J]. 天然气勘探与开发, 2018, 41(1):23-29.
|
[4] |
Ma B, Huang T J, Zou D Y, et al. A seismic-based quantitative method to predict gas content of marine shales: Examples from Changning area,southern Sichuan Basin[J]. Natural Gas Exploration and Development, 2018, 41(1):23-29.
|
[5] |
张晓明, 石万忠, 舒志国, 等. 涪陵地区页岩含气量计算模型及应用[J]. 地球科学, 2017, 42(7):1157-1168.
|
[5] |
Zhang X M, Shi W Z, Shu Z G, et al. Calculation model of shale gas content and its application in Fuling area.[J]. Earth Science, 2017, 42(7):1157-1168.
|
[6] |
王昊, 严加永, 付光明, 等. 深度学习在地球物理中的应用现状与前景[J]. 地球物理学进展, 2020, 35(2):642-655.
|
[6] |
Wang H, Yan J Y, Fu G M, et al. Current status and application prospect of deep learning in geophysics[J]. Progress in Geophysics, 2020, 35(2):642-655.
|
[7] |
杨午阳, 魏新建, 何欣. 应用地球物理+AI的智能化物探技术发展策略[J]. 石油科技论坛, 2019, 38(5):40-47.
|
[7] |
Yang W Y, Wei X J, He X. Development plan for intelligent geophysical prospecting technology of applied geophysical+AI[J]. Oil Forum, 2019, 38(5):40-47.
|
[8] |
吕尧, 单小彩, 霍守东, 等. 基于深度卷积神经网络的地震数据局部信噪比估计[J]. 地球物理学报, 2020, 63(1):320-328.
|
[8] |
Lyu Y, Shan X C, Huo S D, et al. Local SNR estimation of seismic data based on deep convolutional neural network[J]. Chinese Journal of Geophysics, 2020, 63(1):320-328.
|
[9] |
张勇, 何贵松, 李彦婧, 等. 基于叠前反演的神经网络孔隙度预测技术——以南川地区为例[J]. 科学技术与工程, 2019, 19(25):83-89.
|
[9] |
Zhang Y, He G S, Li Y J, et al. Neural network porosity prediction technology based on prestack inversion:Take Nanchuan area as an example[J]. Science Technology and Engineering, 2019, 19(25):83-89.
|
[10] |
郭彤楼, 蒋恕, 张培先, 等. 四川盆地外围常压页岩气勘探开发进展与攻关方向[J]. 石油实验地质, 2020, 42(5):837-845.
|
[10] |
Guo T L, Jiang S, Zhang P X, et al. Progress and direction of exploration and development of normally-pressured shale gas from the periphery of Sichuan Basin[J]. Petroleum Geology & Experiment, 2020, 42(5):837-845.
|
[11] |
方志雄. 中国南方常压页岩气勘探开发面临的挑战及对策[J]. 油气藏评价与开发, 2019, 9(5):1-13.
|
[11] |
Fang Z X. Challenges and countermeasures for exploration and development of normal pressure shale gas in southern China[J]. Reservoir Evaluation and Development, 2019, 9(5):1-13.
|
[12] |
何贵松, 何希鹏, 高玉巧, 等. 渝东南盆缘转换带金佛斜坡常压页岩气富集模式[J]. 天然气工业, 2020, 40(6):50-60.
|
[12] |
He G S, He X P, Gao Y Q, et al. Enrichment model of normal-pressure shale gas in the Jinfo slope of the basin-margin transition zone in Southeast Chongqing[J]. Natural Gas Industry, 2020, 40(6):50-60.
|
[13] |
何希鹏, 王运海, 王彦祺, 等. 渝东南盆缘转换带常压页岩气勘探实践[J]. 中国石油勘探, 2020, 25(1):126-136.
|
[13] |
He X P, Wang Y H, Wang Y Q, et al. Exploration practices of normal-pressure shale gas in the marginal transition zone of the southeast Sichuan Basin[J]. China Petroleum Exploration, 2020, 25(1):126-136.
|
[14] |
何希鹏, 何贵松, 高玉巧, 等. 渝东南盆缘转换带常压页岩气地质特征及富集高产规律[J]. 天然气工业, 2018, 38(12):1-14.
|
[14] |
He X P, He G S, Gao Y Q, et al. Geological characteristics and enrichment laws of normal-pressure shale gas in the basin-margin transition zone of SE Chongqing[J]. Natural Gas Industry, 2018, 38(12):1-14.
|
[15] |
张玉玺, 刘洋, 张浩然, 等. 基于深度学习的多属性盐丘自动识别方法[J]. 石油地球物理勘探, 2020, 55(3):475-483.
|
[15] |
Zhang Y X, Liu Y, Zhang H R, et al. Multi-attribute automatic interpretation of salt domes based on deep learning[J]. Oil Geophysical Prospecting, 2020, 55(3):475-483.
|
[16] |
丁燕, 杜启振, Qamar Yasin, 等. 基于深度学习的裂缝预测在S区潜山碳酸盐岩储层中的应用[J]. 石油物探, 2020, 59(2):267-275.
|
[16] |
Ding Y, Du Q Z, Qamar Y, et al. Fracture prediction based on deep learning:Application to a buried hill carbonate reservoir in the S area[J]. Geophysical Prospecting for Petroleum, 2020, 59(2):267-275.
|
[17] |
王亚, 易远元, 王成泉, 等. 叠后反演技术在杨税务潜山裂缝孔隙型储层预测中的应用[J]. 物探与化探, 2020, 44(5):1208-1214.
|
[17] |
Wang Y, Yi Y Y, Wang C Q, et al. The application of post-stack inversion technology to the prediction of fracture and pore reservoir in Yangshuiwu buried hill[J]. Geophysical and Geochemical Exploration, 2020, 44(5):1208-1214.
|
[18] |
陈志刚, 马文杰, 赵宏忠, 等. 利用曲率类属性预测储层裂缝的流程及应用实例[J]. 物探与化探, 2020, 44(5):1201-1207.
|
[18] |
Chen Z G, Ma W J, Zhao H Z, et al. A technical workflow of fracture prediction with curvature-related attributes and it applications[J]. Geophysical and Geochemical Exploration, 2020, 44(5):1201-1207.
|
[19] |
王逸宸, 柳林涛, 许厚泽. 基于卷积神经网络识别重力异常体[J]. 物探与化探, 2020, 44(2):394-400.
|
[19] |
Wang Y C, Liu L T, Xu H Z. The identification of gravity anomaly body based on the convolutional neural network[J]. Geophysical and Geochemical Exploration, 2020, 44(2):394-400.
|
[20] |
张昊, 朱培民, 顾元, 等. 基于深度学习的地震速度谱自动拾取方法[J]. 石油物探, 2019, 58(5):724-733.
|
[20] |
Zhang H, Zhu P M, Gu Y, et al. Velocity auto-picking from seismic velocity spectra based on deep learning[J]. Geophysical Prospecting for Petroleum, 2019, 58(5):724-733.
|
[1] |
LI Mu-Si, CHEN Li-Rong, XIE Fei, GU Lan-Ding, WU Xiao-Dong, MA Fen, YIN Zhao-Feng. Comparison of deep learning algorithms for geochemical anomaly identification[J]. Geophysical and Geochemical Exploration, 2023, 47(1): 179-189. |
[2] |
YU Chang-Heng, ZHENG Jian, ZHANG Xu-Lin, ZHOU Hao, WANG An-Ping, LIU Lei, LI Yi. Application of the integrated engineering geophysical exploration technology in the predrilling stage of shale gas well platforms in southern Sichuan Province[J]. Geophysical and Geochemical Exploration, 2023, 47(1): 99-109. |
|
|
|
|