|
|
The key technology of shallow imaging in urban 3D seismic data processing |
YONG Fan1,2( ), LIU Zi-Long2, JIANG Zheng-Zhong2, LUO Shui-Yu2, LIU Jian-Sheng2 |
1. School of Geophysics and Information Technology,China University of Geosciences,Beijing 100083,China 2. Institute of Geophysical and Geochemical Exploration,Chinese Academy of Geological Sciences,Langfang 065000,China |
|
|
Abstract The shallow 3D seismic reflection exploration has a large amount of data,accurate migration, and high lateral resolution.It can overcome some difficulties of the 2D seismic exploration in the city caused by the obstacles,such as obliquely intersection of the survey line with the structural strike,poor shallow structure detecting,and inaccurate fault locating.Therefore,shallow 3D seismic exploration can provide higher-quality data for urban underground space exploration,active fault detection,and geological disaster prospecting.However,urban 3D seismic exploration faces some challenges of shallow imaging,such as inhomogeneity of surface velocity,strong environmental noise,and uneven distribution of shot points caused by obstacles.To improve shallow imaging,tomographic static correction,pre-stack multi-method combination denoising,regularized interpolation of pre-stack data,and combined normal moveout strength cutting.The result shows our processing can improve the quality of shallow imaging of 3D seismic data.
|
Received: 13 January 2021
Published: 15 December 2021
|
|
|
|
|
|
Data processing flow
|
处理流程 | 主要参数 | 三维网格定义 | 面元大小:5 m×10 m | 层析静校正
| 最终基准面高程为100 m;替换速度为2 000 m/s;直达波偏移距范围0~50 m;折射波最小偏移距为200 m,最大偏移距由程序自动计算;反演层数5层 | 滤波 | 叠前采用低截频率为15 Hz,高截为120 Hz的带通滤波参数;叠后采用25~100 Hz的带通滤波 | 单频噪声衰减 | 噪声频率50 Hz,回馈增益0.05,压制第一、第二谐波 | 异常振幅衰减
| 处理窗口长度300 ms;窗口重叠30%;最小处理频率0 Hz;最大处理频率200 Hz;处理频带宽度3 Hz;空间中值滤波宽度35道;最大插值半径3道;中值压制百分比10% | 球面补偿 | 初至速度1 500 m/s | 预测反褶积 | 预测步长8 ms;算子长度180 ms | 动校拉伸切除 | 拉伸切除因子:1.2;最小切除偏移距:100 m | 叠前插值 | 主方向辛格函数长度5;副方向辛格函数长度5;辛格频率平滑因子1.0 | 叠后时间偏移 | 方法:相移偏移;偏移速度:0.55 叠加速度 |
|
Key processing parameters
|
|
Comparison of shot gather between before(a) and after(b) static corrention
|
|
Noise on shot gather(a) and their frequency spectrum(b)
|
|
Comparision between before (a) and after (b) denoise on shot gather
|
|
Layout of receivers and shot points
|
|
CMP fold
|
|
Comparison of time slice between before (a) and after (b) interpolation
|
|
Comparison of time stack profile between before (a) and after (b) interpolation
|
|
Comparison of the moveout stretching correction results between conventional processing (a) and shallow-protect processing (b)
|
[1] |
徐建宇. 地震方法在城市浅覆盖区活断层调查中的应用[J]. 物探与化探, 2016, 40(6):1103-1107.
|
[1] |
Xu J Y. The application of seismic method to the investigation of active faults in urban shallow Quaternary sediment area[J]. Geophysical and Geochemical Exploration, 2016, 40(6):1103-1107.
|
[2] |
张保卫, 沈鸿雁. 三分量地震散射波成像在天津蓟县城市活断层探测中的应用[J]. 物探与化探, 2014, 38(3):504-509.
|
[2] |
Zhang B W, Shen H Y. The application of three-component scattering wave seismic imaging in detecting city active fault in Ji district,Tianjin city[J]. Geophysical and Geochemical Exploration, 2014, 38(3):504-509.
|
[3] |
邓起东, 徐锡伟, 张先康, 等. 城市活动断裂探测的方法和技术[J]. 地学前缘, 2003, 10(1):94-104.
|
[3] |
Deng Q D, Xu X W, Zhang X K, et al. Method and techniques for surveying and prospecting active faults in urban areas[J]. Earth Science Frontiers, 2003, 10(1):94-104.
|
[4] |
柴铭涛, 高景华. 城市活断层探测中的反射地震数据采集和处理技术[J]. 物探与化探, 2007, 31(4):365-369.
|
[4] |
Chai M T, Gao J H. Seismic data collection and processing in the active fault detectation of urban areas[J]. Geophysical and Geochemical Exploration, 2007, 31(4):365-369.
|
[5] |
雍凡, 蒋正中, 罗水余, 等. 夏垫断裂北段浅部构造的高分辨率地震反射勘探研究[J]. 工程地球物理学报, 2014, 11(6):832-836.
|
[5] |
Yong F, Jiang Z Z, Luo S Y, et al. The seismic reflection study on high-resolution profile of shallow structure in North Part of Xiadian Fault[J]. Chinese Journal of Engineering Geophysics, 2014, 11(6):832-836.
|
[6] |
李颜贵, 蒋正中, 刘子龙, 等. 地震纵波横波联合勘探方法寻找近地表第四系内隐伏断裂方法研究[J]. 物探化探计算技术, 2014, 36(6):692-699.
|
[6] |
Li Y G, Jiang Z Z, Liu Z L, et al. Joint P-wave and S-wave seismic reflection to investigate the quatermary blind fault near surface[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2014, 36(6):692-699.
|
[7] |
刘影, 沈月霞, 牛小军. 三维地震勘探在城市活断层精确定位中的意义[J]. 地震学报, 2012, 34(1):97-104.
|
[7] |
Liu Y, Shen Y X, Niu X J. Significance of 3D seismic exploration in urban active fault fine locating[J]. Acta Seismologica Sinica, 2012, 34(1):97-104.
|
[8] |
夏训银, 左万宝, 张进国, 等. 三维地震在城市活断层探测中的应用[J]. 勘察科学技术, 2010(1):58-61.
|
[8] |
Xia X Y, Zuo W B, Zhang J G, et al. Application of three-dimensional seismic method in urban active fault detection[J]. Site Investigation Science and Technology, 2010(1):58-61.
|
[9] |
王瑞芳, 吕进英. 城镇覆盖区野外三维地震勘探方法及效果[J]. 安徽地质, 2008, 18(3):210-211.
|
[9] |
Wang R F, Lyu J Y. Field three-dimension seismic exploration method and result for city cover area[J]. Geology of Anhui, 2008, 18(3):210-211.
|
[10] |
张光德, 丁伟, 胡立新, 等. 城区三维地震观测系统设计及应用效果[J]. 石油地球物理勘探, 2006, 41(2):129-132.
|
[10] |
Zhang G D, Ding W, Hu L X, et al. Design of 3-D seismic geometry in urban area and applied effects[J]. Oil Geophysical Prospecting, 2006, 41(2):129-132.
|
[11] |
周曲曼, 江宏, 姚一林, 等. JH城区三维地震勘探方法探讨[J]. 工程地球物理学报, 2011, 8(5):588-593.
|
[11] |
Zhou Q M, Jiang H, Yao Y L, et al. Three-dimensional seismic exploration method in JH city[J]. Chinese Journal of Engineering Geophysics, 2011, 8(5):588-593.
|
[12] |
尹喜玲. 城市浅层三维地震勘探方法研究[D]. 杭州:浙江大学, 2010.
|
[12] |
Yin X L. Study on shallow 3-d seismic survey in urban engineering investigation[D]. Hangzhou:Zhejiang University, 2010.
|
[13] |
Heggland R, Nygaard E, Gallagher J W, et al. Techniques and experiences using exploration 3D seismic data to map drilling hazards[C]// Houston Texas:the Offshore Technology Conference, 1996.
|
[14] |
Mcconnell D R,Others. Optimizing deepwater well locations to reduce the risk of shallow-water-flow using high-resolution 2D and 3D seismic data[C]// Houston Texas:the Offshore Technology Conference, 2000.
|
[15] |
Posamentier H W. Seismic geomorphology:Imaging elements of depositional systems from shelf to deep basin using 3D seismic data:Implications for exploration and development[J]. Geological Society London Memoirs, 2004, 29(1):11-24.
|
[16] |
Trude K J. Kinematic indicators for shallow level Igneous Intrusions from 3D Seismic Data:Evidence of Flow Firection and Feeder Location[J]. Geological Society London Memoirs, 2004, 29(1):209-218.
|
[17] |
Schmelzbach C, Horstmeyer H, Juhlin C. Shallow 3D seismic-reflection imaging of fracture zones in crystalline rock[J]. Geophysics, 2007, 72(6):B149-B160.
|
[18] |
Milkereit B, Berrer E K, King A R, et al. Development of 3-D seismic exploration technology for deep nickel-copper deposits—A case history from the Sudbury basin,Canada[J]. Geophysics, 2000, 65(6):1890-1899.
|
[19] |
Malehmir A, Bellefleur G. 3D seismic reflection imaging of volcanic-hosted massive sulfide deposits: Insights from reprocessing Halfmile Lake data,New Brunswick,Canada[J]. Geophysics, 2009, 74(6):B209-B219.
|
[20] |
Buker F, Green A G, Horstmeyer H. 3-D high-resolution reflection seismic imaging of unconsolidated glacial and glaciolacustrine sediments:Processing and interpretation[J]. Geophysics, 2000, 65(1):18-34.
|
[21] |
Davies T A, Austin J A. High-resolution 3D seismic reflection and coring techniques applied to late Quaternary deposits on the New Jersey shelf[J]. Marine Geology, 1997, 143(1):137-149.
|
[22] |
Bachrach R, Mukerji T. Fast 3D ultra shallow seismic reflection imaging using portable geophone mount[J]. Geophysical Research Letters, 2001, 28(1):45-48.
|
[23] |
Bachrach R, Dvorkin J, Nur A M. Seismic velocities and Poisson's ratio of shallow unconsolidated sands[J]. Geophysics, 2000, 65(2):559-564.
|
[24] |
Bachrach R, Mukerji T. Portable dense geophone array for shallow and very shallow 3D seismic reflection surveying:Part 1-Data acquisition,quality control,and processing[J]. Geophysics, 2004, 69(6):1443-1455.
|
[25] |
Bachrach R, Dvorkin J, Nur A. High-resolution shallow-seismic experiments in sand,Part II:Velocities in shallow unconsolidated sand[J]. Geophysics, 1998, 63(4):1234-1240.
|
[26] |
Bachrach R, Nur A. High-resolution shallow-seismic experiments in sand,Part I:Water table,fluid flow,and saturation[J]. Geophysics, 1998, 63(4):1225-1233.
|
[1] |
YUE Hang-Yu, WANG Xiao-Jiang, WANG Lei, CHEN Xiao-Qiang, JIANG Chun-Xiang, LI Pei, ZHANG Bao-Wei. Key techniques for seismic data processing of deep metal deposits:A case study of the Chaganhua molybdenum orefield in Inner Mongolia[J]. Geophysical and Geochemical Exploration, 2022, 46(6): 1315-1326. |
[2] |
ZHU Jian-Bing, GAO Zhao-Qi, TIAN Ya-Jun, LIANG Xing-Cheng. Globally optimized seismic impedance inversion with lateral constraints and its application[J]. Geophysical and Geochemical Exploration, 2022, 46(6): 1477-1484. |
|
|
|
|