|
|
A processing technique of step effect in concentration-area multifractal method |
HAN Deng-Hui1( ), GAO Shun-Bao2( ), ZHENG You-Ye1,2, CHEN Xin1, JIANG Xiao-Jia1, GU Yan-Rong1, YAN Chen-Chen1 |
1. Faculty of Earth Resource, China University of Geosciences(Wuhan), Wuhan 430074, China 2. Geological Survey, China University of Geosciences(Wuhan), Wuhan 430074, China |
|
|
Abstract In the geochemical stream sediment survey, obvious differences in geochemical backgrounds of different geological bodies will affect the anomaly delineation and even lead to enhancement of anomalies irrelevant to mineralization, which weakens the mineralization-related weak anomalies. In this paper,the influence of step effect data on the fractal distribution form is discussed from the mathematical view based on the superposition law of fractal distribution, and an improved method for eliminating step effects in concentration-area fractal theory is proposed.In this method, the authors divide the study area based on geochemical background and then discuss fractal distribution forms respectively.The result shows that this method can accurately filter irrelevant lithology information and identify weak anomalies caused by mineralization in low-background sub-zone. It is applicable to the extraction of geochemical mineralization-related anomaly in the areas seriously affected by lithology.
|
Received: 10 October 2019
Published: 29 December 2020
|
|
Corresponding Authors:
GAO Shun-Bao
E-mail: 252094146@qq.com;gaoshunbao2002@163.com
|
|
|
|
|
Double logarithmic plots before(a) and after(b) superposition of two sets of ideal geochemical data in accordance with fractal laws
|
27], sketch map of regional mineral resources(b) and geological map(c) in Pujie area 1—upper Carboniferous-lower Permian Laga formation(C2P1l); 2—lower Permian Angjie formation(P1a); 3—Paleocene Dianzhong formation(E1d); 4—Eocene Nianbo formation(E2n); 5—upper Cretaceous Jiangba formation(K2jb); 6—intrusions; 7—Quaternary sediments(Q); 8—Duijiala reverse fault ">
|
Tectonics and position regional map of Gangdise(a)[27], sketch map of regional mineral resources(b) and geological map(c) in Pujie area 1—upper Carboniferous-lower Permian Laga formation(C2P1l); 2—lower Permian Angjie formation(P1a); 3—Paleocene Dianzhong formation(E1d); 4—Eocene Nianbo formation(E2n); 5—upper Cretaceous Jiangba formation(K2jb); 6—intrusions; 7—Quaternary sediments(Q); 8—Duijiala reverse fault
|
参数 | Au | Ag | Cu | Pb | Zn | Cd | W | Sn | Mo | Bi | As | Sb | Hg | P | Mn | B | 平均值 | 0.85 | 0.10 | 13.57 | 55.21 | 77.90 | 0.19 | 3.45 | 5.79 | 0.89 | 0.60 | 36.77 | 1.91 | 0.03 | 400.26 | 628.07 | 54.30 | 标准差 | 2.63 | 0.77 | 14.17 | 148.16 | 84.91 | 0.38 | 5.44 | 16.75 | 1.17 | 1.49 | 367.71 | 3.59 | 0.01 | 229.32 | 478.59 | 30.56 | 富集系数 | 0.99 | 1.73 | 0.8 | 2.91 | 1.15 | 2.34 | 3.56 | 2.76 | 1.44 | 3.33 | 8.36 | 5.63 | 0.55 | 0.73 | 1.08 | 2.59 | 变异系数 | 3.11 | 7.45 | 1.04 | 2.68 | 1.09 | 2.02 | 1.58 | 2.89 | 1.31 | 2.49 | 10 | 1.88 | 0.42 | 0.57 | 0.76 | 0.56 | 地层 | 衬值 | Au | Ag | Cu | Pb | Zn | Cd | W | Sn | Mo | Bi | As | Sb | Hg | P | Mn | B | 第四系 | 1.32 | 1.33 | 1.27 | 1.15 | 1.16 | 1.17 | 1.02 | 1.55 | 0.98 | 1.12 | 1.52 | 1.18 | 1.03 | 1.19 | 1.11 | 1.07 | 昂杰组 | 1.6 | 1.17 | 1.72 | 1.04 | 1.29 | 1.17 | 1.03 | 1 | 1.06 | 1.24 | 1.24 | 1.24 | 1.2 | 1.52 | 1.23 | 1.61 | 晚白垩—始新世岩体 | 0.92 | 1.17 | 0.91 | 0.86 | 1.03 | 1 | 1.01 | 0.83 | 1.06 | 0.74 | 1.05 | 0.75 | 0.94 | 1.47 | 1.05 | 0.94 | 年波组 | 1.48 | 1.83 | 0.62 | 2.07 | 1.15 | 2.17 | 1.35 | 2.35 | 0.98 | 1.68 | 4.04 | 1.66 | 0.72 | 0.6 | 1.11 | 0.72 | 拉嘎组 | 2.02 | 1.25 | 1.83 | 1.07 | 1.36 | 1.28 | 1.09 | 1 | 0.99 | 1.16 | 1.27 | 1.11 | 1.29 | 1.52 | 1.14 | 1.38 | 典中组 | 0.9 | 2.17 | 0.63 | 1.66 | 1.07 | 1.5 | 1 | 1.1 | 1.28 | 0.96 | 0.92 | 1.13 | 0.91 | 0.75 | 1.02 | 0.77 |
|
Statistic characteristic geochemistry exploration data from Pujie area
|
|
Geochemistry contour map and background division from Pujie area a—geochemical contour map of Cu; b—geochemical contour map of Zn; c—geochemical contour map of Au; d—geochemical background division from Pujie area; 1—subzone of Carboniferous-Permian sedimentary strata;2—subzone of Paleogene volcanic strata
|
|
Concentration-area double logarithmic plot and section lines fitting patterns of Ag(a),Pb(b),Zn(c),Au(d),Sn(e),W(f) in whole-area from Pujie area
|
|
Concentration-area double logarithmic plot and section lines fitting patterns of Ag(a),Pb(b),Zn(c),Au(d),Sn(e),W(f) in subzone-1 from Pujie area
|
|
Concentration-area double logarithmic plot and section lines fitting patterns of Ag(a),Pb(b),Zn(c),Au(d),Sn(e),W(f) in subzone-2 from Pujie area
|
元素 | 全区 | 分区 | 元素 | 全区 | 分区 | 1区 | 2区 | 1区 | 2区 | C编号 | 数值 | C编号 | 数值 | C编号 | 数值 | C编号 | 数值 | C编号 | 数值 | C编号 | 数值 | | | | C1 | 0.069 | | | | | | | | C1 | 47.809 | | | | | | C1 | 0.369 | | C1 | 78.946 | C1 | 76.254 | | | | | | C2 | 0.482 | 〗 | | | | | | C2 | 79.604 | | Ag | | | | | C2 | 1.599 | Zn | C2 | 110.59 | C2 | 109.262 | | | | C1 | 0.725 | | | | | | | | C3 | 241.29 | | | | C2 | 1.608 | | | | | | C3 | 363.735 | | | C3 | 349.865 | | C3 | 19.204 | | | C3 | 17.948 | | | | C4 | 780.408 | | | | C1 | 107.037 | C1 | 109.4 | | | | C1 | 6.6796 | | | C1 | 8.324 | Pb | C2 | 409.117 | | | C1 | 437.8 | W | | | C1 | 6.475 | | | | C3 | 1036.91 | | | C2 | 858.428 | | | | C2 | 13.377 | | | | | | C1 | 5.56 | | | | C1 | 2.926 | C1 | 2.329 | C1 | 2.072 | | | | C2 | 10.253 | | | | | | C2 | 4.808 | | | Sn | C1 | 18.236 | | | C1 | 12.306 | Au | | | | | C2 | 26.379 | | | | C3 | 16.652 | | | | C2 | 66.535 | | | C3 | 71.253 | | C2 | 180.047 | | | C2 | 182.435 | | | | | | | |
|
Inflect points of fitting straight line in concentration-area double logarithmic plot from two subzones and whole-area of Pujie area
|
[1] |
刘大文. 区域地球化学数据的归一化处理及应用[J]. 物探与化探, 2004,28(3):273-275.
|
[1] |
Liu D W. The normalization of regional geochemical data and its application[J]. Geophysical and Geochemical Exploration, 2004,28(3):273-272.
|
[2] |
赵荣军. 不同方法在栾川北部化探数据处理中的应用[J]. 地质与勘探, 2006,42(3):67-71.
|
[2] |
Zhao R J. Application of different data processing method in geochemical exploration in the north Luanchuan[J]. Geology and Prospecting, 2006,42(3):67-71.
|
[3] |
李宾, 李随民, 韩腾飞, 等. 趋势面方法圈定龙关地区化探异常及应用效果评价[J]. 物探与化探, 2012,36(2):202-207.
|
[3] |
Li B, Li S M, Han T F, et al. The application of trend surface analysis to delineating geochemical anomalies in Longguan area and its effect[J]. Geophysical and Geochemical Exploration, 2012,36(2):202-207.
|
[4] |
郑有业, 高顺宝, 薛兆龙, 等. 基于地质内涵的化探异常识别与评价方法[P]. 中国专利,CN103345566A, 2013-10-09.
|
[4] |
Zheng Y Y, Gao S B, Xue Z L, et al. A geochemical anomaly identification and evaluation method based on geological connotation[P]. China Patent,CN103345566A, 2013-10-09.
|
[5] |
周蒂. 分区背景校正法及其对化探异常圈定的意义[J]. 物探与化探, 1986,10(4):263-273.
|
[5] |
Zhou D. Unit-wise adjustment of geochemical background data and its significancein geochemical anomaly delineation[J]. Geophysical and Geochemical Exploration, 1986,10(4):263-273.
|
[6] |
史长义, 张金华, 黄笑梅. 子区中位数衬值滤波法及弱小异常识别[J]. 物探与化探, 1999,23(4):250-257.
|
[6] |
Shi C Y, Zhang J H, Huang X M. Subregion median contrast filtering method and recognition of weak anomalies[J]. Geophysical and Geochemical Exploration, 1999,23(4):250-257.
|
[7] |
万能, 李书涛, 曾明中. 滤波技术在武当—桐柏—大别成矿带地球化学异常提取中的应用[J]. 地质科技情报, 2015,34(2):15-19.
|
[7] |
Wan N, Li S T, Zeng M Z. The application of the filtering method to the sieving and inspection of geochemical anomalies in the Wudang-Tongbai-Dabie metallogenic belt[J]. Geological Science and Technology Information, 2015,34(2):15-19.
|
[8] |
金俊杰, 陈建国. 地球化学异常提取的自适应衬值滤波法[J]. 物探与化探, 2011,35(4):526-531.
|
[8] |
Jin J J, Chen J G. A self-adaptive method of contrast filtering for extracting geochemical anomaly[J]. Geophysical and Geochemical Exploration, 2011,35(4):526-531.
|
[9] |
Cheng Q, Agterberg F P, Ballantyne S B. The separation of geochemical anomalies from background by fractal methods[J]. Journal of Geochemical Exploration, 1994,51(2):118-120.
|
[10] |
Gerd R. The fractal properties of geochemical landscapes as an indicator of weathering and transport processes within the Eastern Alps[J]. Journal of Geochemical Exploration, 2001,73(1):27-42.
|
[11] |
程志中, 谢学锦. 岩石中元素背景值变化对地球化学成矿预测的影响[J]. 中国地质, 2006,33(2):416-417.
|
[11] |
Cheng Z Z, Xie X J. Influence of variation in element background values in rocks on metallogenic prognosis in geochemical maps[J]. Geology in China, 2006,33(2):416-417.
|
[12] |
Zuo R G, Wang J, Chen G X, et al. Identification of weak anomalies: A multifractal perspective[J]. Journal of Geochemical Exploration, 2015,148:12-24.
|
[13] |
Sun T, Liu L. Delineating the complexity of Cu-Mo mineralization in a porphyry intrusion by computational and fractal modeling: A case study of the Chehugou deposit in the Chifeng district, Inner Mongolia, China[J]. Journal of Geochemical Exploration, 2014,144:128-143.
|
[14] |
Liu Y P, Zhu L X, Ma S M, et al. Constraining the distribution of elements and their controlling factors in the Zhaojikou Pb-Zn ore deposit, SE China, via fractal and compositional data analysis[J]. Applied Geochemistry, 2019,108:1-10.
|
[15] |
刘世宝, 陈鑫, 国显正, 等. 分形(多重分形)在区域化探数据处理中的应用——以柴北缘荒漠戈壁景观区为例[J]. 物探与化探, 2016,40(3):550-556,560.
|
[15] |
Liu S B, Chen X, Guo X Z, et al. Fractal / multifractal modeling of geochemical exploration data in desert landscape area of Qaidam Basin[J]. Geophysical and Geochemical Exploration, 2016,40(3):550-556,560.
|
[16] |
柯贤忠, 谢淑云, 高顺宝, 等. 西藏班戈地区化探数据的多重分形特征及其成矿意义[J]. 地质科技情报, 2015,34(1):148-153.
|
[16] |
Ke X Z, Xie S Y, Gao S B, et al. Multifractal distribution patterns of geochemical data and its metallogenic significance:A case study in Bange region,Tibet[J]. Geological Science and Technology Information, 2015,34(1):148-153.
|
[17] |
疏志明, 彭省临, 王雄军, 等. 多重分形在个旧花岗岩凹陷带地球化学数据分析中的应用[J]. 物探与化探, 2009,33(3):327-330,344.
|
[17] |
Shu Z M, Peng S L, Wang X J, et al. The application of multifractal method to the analysis of trace element geochemical data in the Gejiu granite depression zone,Yunnan Province[J]. Geophysical and Geochemical Exploration, 2009,33(3):327-330,344.
|
[18] |
向中林, 顾雪祥, 王恩营, 等. 新疆博罗科努成矿带东段地球化学分形特征及找矿预测[J]. 河南理工大学学报:自然科学版, 2019,38(4):49-57.
|
[18] |
Xiang Z L, Gu X X, Wang E Y, et al. Geochemical fractal characteristics and prospecting prediction of the eastern section of the Boluokenu metallogenic belt,Xinjiang[J]. Journal of Henan Polytechnic University:Natural Science, 2019,38(4):49-57.
|
[19] |
Zuo R G, Cheng Q M, Agterberg F P, et al. Application of singularity mapping technique to identify local anomalies using stream sediment geochemical data:A case study from Gangdese, Tibet, western China[J]. Journal of Geochemical Exploration, 2009,101(3):225-235.
|
[20] |
刘舒飞. 广西地球化学区带规律与异常分布分形解析[D]. 北京:中国地质大学(北京), 2017.
|
[20] |
Liu S F. Fractal analysis on geochemical distribution and anomaly separation in the Guangxi autonomous region[D]. Beijing:China University of Geosciences, 2017.
|
[21] |
龚庆杰, 张德会, 韩东昱. 一种确定地球化学异常下限的简便方法[J]. 地质地球化学, 2001,29(3):215-220.
|
[21] |
Gong Q J, Zhang D H, Han D X. A simple method to determine the lower limit of element geochemical anomalies[J]. Earth and Environment, 2001,29(3):215-220.
|
[22] |
Mandelbrot B B. The fractal geometry of nature[M]. New York:WH freeman, 1983: 468-469.
|
[23] |
Korvin G. Fractal models in the earth sciences[M]. Amsterdam:Elsevier, 1992: 408.
|
[24] |
成秋明. 非线性成矿预测理论:多重分形奇异性—广义自相似性—分形谱系模型与方法[J]. 地球科学, 2006,31(3):337-348.
|
[24] |
Cheng Q M. Singularity-genralized self-similarity-fractal spectrum(3S) models[J]. Earth Science, 2006,31(3):337-348.
|
[25] |
高顺宝. 西藏冈底斯西段铜铁多金属成矿作用与找矿方向[D]. 武汉:中国地质大学, 2015.
|
[25] |
Gao S B, Copper-iron polymetal metallogenic regularity and election of targeet areas in the western of Gandise metallogenic belt, Tibet[D]. Wuhan:China University of Geosciences, 2015.
|
[26] |
王立强, 陈伟, 林鑫, 等. 冈底斯成矿带斑岩—矽卡岩矿化之耦合关系——以邦铺矿床为例[J]. 矿物学报, 2013,33(S2):838-839.
|
[26] |
Wang L Q, Chen W, Lin X, et al. Coupling relationship between porphyry and skarn mineralization in Gangdise metallogenic belt: A case study of Bangpu deposit[J]. Acta Mineralogica Sinica, 2013,33(S2):838-839.
|
[27] |
栾康, 郑有业, 高顺宝, 等. 西藏仲巴县玛浪勒铜矿床地质特征及流体包裹体研究[J]. 地质科技情报, 2017,36(5):164-172.
|
[27] |
Luan K, Zheng Y Y, Gao S B, et al. Geological characteristics and fluid inclusions of Malangle copper deposit in Zhongba County,Tibet[J]. Geological Science and Technology Information, 2017,36(5):164-172.
|
[1] |
XU Yun-Feng, HAO Xue-Feng, QIN Yu-Long, WANG Xian-Feng, XIONG Chang-Li, LI Ming-Ze, WU Weng-Hui, ZHAN Han-Yu. Geochemical characteristics of stream sediments and prospecting direction in Chahe area of Sichuan Province[J]. Geophysical and Geochemical Exploration, 2021, 45(3): 624-638. |
[2] |
Kai LI, Yong LIAO, Ning HUANG, Hong-Sheng CHEN, Jing YUAN, Xiao-Long LIU. Anomaly characteristics of 1∶50,000 stream sediment survey in Wangyangtai area of Balikun, Xinjiang, and the optimization of target areas[J]. Geophysical and Geochemical Exploration, 2019, 43(6): 1236-1245. |
|
|
|
|