|
|
Research on the state information acquisition technology of marine controlled source electromagnetic transmitter system |
LI Xian-Cheng1( ), CHEN Guo-Qing1( ), DENG Ming2, LUO Xian-Hu3, WANG Meng2, DUAN Ni-Ni2, ZHOU Li1 |
1.Huazhong Institute of Electro-Optics,Wuhan National Laboratory for Optoelectronics,Wuhan 430223,China 2.China University of Geosciences,School of Geophysics and Information Technology,Beijing 100083,China 3.Guangzhou Marine Geological Survey,Guangzhou 510075,China |
|
|
Abstract State information acquisition is an indispensable part for MCSEM(marine controllable source electromagnetic) transmitter system which is important for MCSEM exploration. Especially under the conditions of high voltage, high temperature and strong interference, it plays an inestimable role in the reliable and stable operation of the instrument. Based on the principles of simplicity, ease of use, reliability and high safety factor, the state acquisition technology for the new generation of MCSEM transmitter system is designed and implemented by using the technology of CAN bus, serial port, optical fiber and wireless network. Test shows that the technical scheme of state acquisition is simple, stable and reliable.It has meet the harsh requirements of MCSEM transmitter system and has been applied to the exploration of nature gas hydrate in South China Sea.
|
Received: 25 March 2020
Published: 26 October 2020
|
|
Corresponding Authors:
CHEN Guo-Qing
E-mail: 156861160@qq.com;cgq43636573@163.com
|
|
|
|
|
Overall frame of state information acquisition technical scheme for marine controlled source electromagnetic transmitter system
|
|
PC monitoring software interface for MCSEM
|
|
Schematic diagram of the deck monitoring unit
|
|
Block diagram of the deck power status acquisition module
|
|
Connection diagram for on-line insulation detection and status acquisition board
|
|
Hardware equipment and circuit board related to the deck monitoring unit
|
|
Schematic diagram of the underwater monitoring unit
|
|
LM35 temperature measurement curve and DS18B20 temperature measurement curve
|
|
Structure diagram and real object of CAN bus transmitted temperature measurement system
|
|
Outdoor test curve of emission current, bus voltage and module temperature
|
|
Altimeter and attitude azimuth module
|
|
Current acquisition circuit frame
|
|
Related equipment of the state acquisition unit of the MCSEM transmitter system
|
|
Part of the data from the survey line
|
[1] |
Cox C S, Constable S, Chave A D, et al. Controlled-source electromagnetic sounding of the oceanic lithosphere[J]. Nature, 1986,320:52-54.
|
[2] |
Myer D, Constable S, Key K, et al. Marine CSEM of the Scarborough gas field, Part 1: experimental design and data uncertainty[J]. Geophysics, 2012,77(4):281-299.
|
[3] |
Constable S, Srnka L J. An introduction to marine controlled-source electromagnetic methods for hydrocarbon exploration[J]. Geophysics, 2007,72(2):3-12.
|
[4] |
Constable S. Ten years of marine CSEM for hydrocarbon exploration[J]. Geophysics, 2010,75(5):75-81.
|
[5] |
景建恩, 伍忠良, 邓明, 等. 南海天然气水合物远景区海洋可控源电磁探测试验[J]. 地球物理学报, 2016,59(7):2564-2572. http://doi:10.6038/cjg20160721.
|
[5] |
Jing J E, Wu Z L, Deng M, et al. Experiment of marine controlled-source electromagnetic detection in a gas hydrate prospective region of the South China Sea[J]. Chinese journal of geophysics(in Chinese), 2016,59(7):2564-2572. http://doi:10.6038/cjg20160721.
|
[6] |
景建恩, 赵庆献, 邓明, 等. 琼东南盆地天然气水合物及其成藏模式的海洋可控源电磁研究[J]. 地球物理学报, 2018,61(11):4677-4689. http://doi:10.6038/cjg2018L0660.
|
[6] |
Jing J E, Zhao Q X, Deng M, et al. A study on natural gas hydrates and their forming model using marine controlled-source electromagnetic survey in the Qiongdongnan Basin[J]. Chinese Journal of Geophysics, 2018,61(11):4677-4689. http://doi:10.6038/cjg2018L0660.
|
[7] |
王猛, 伍忠良, 邓明, 等. MCSEM发射电流波形的高精度时间标识技术[J]. 地球物理学进展, 2015,30(4):1912-1917.
|
[7] |
Wang M, Zhang H Q, Wu Z L, et al. Marine controlled source electromagnetic launch system for gas hydrate resource exploration[J]. Chinese Journal of Geophysics, 2015,30(4):1912-1917.
|
[8] |
王猛, 邓明, 伍忠良, 等. 新型坐底式海洋可控源电磁发射系统及其海试应用[J]. 地球物理学报, 2017,60(11):4253-4261. http://doi:10.6038/cjg20171113.
|
[8] |
Wang M, Deng M, Wu Z L, et al. New type deployed marine controlled source electromagnetic transmitter system and its experiment application[J]. Chinese Journal of Geophysics, 2017,60(11):4253-4261. http://doi:10.6038/cjg20171113.
|
[9] |
Edwards N. Marine controlled source electromagnetics: Principles, methodologies, future commercial applications[J]. Surveys in Geophysics, 2005,26(6):675-700.
|
[10] |
汪海峰, 邓明, 陈凯. 海底电磁接收机新进展[J]. 物探与化探, 2016,40(4):809-815. http://doi.org/10.11720/wtyht.2016.4.27
|
[10] |
Wang H F, Deng M, Chen K. New progress of ocean bottom electromagnetic receiver[J]. Geophysical and Geochemical Exploration, 2016,40(4):809-815. http://doi.org/10.11720/wtyht.2016.4.27
|
[11] |
邓明, 景建恩, 郭林燕, 等. MCSEM电磁场能流密度分布特征研究[J]. 地球物理学报, 2017,60(11):4149-4159. http://doi:10.6038/cjg20171102.
|
[11] |
Deng M, Jing J E, Guo L Y, et al. The distribution characteristics of the energy flow density of MCSEM[J]. Chinese Journal of Geophysics(in Chinese), 2017,60(11):4149-4159. http://doi:10.6038/cjg20171102.
|
[12] |
杜蕙, 方彦军, 孔政敏. 基于CAN 总线的锅炉膨胀监测系统设计[J]. 仪表技术与传感器, 2018 (2):113-117.
|
[12] |
Du H, Fang Y J, Kong Z M. Design of boiler expansion monitoring system based on CAN bus[J]. Instrument Technique and Sensor(in Chinese), 2018 (2):113-117.
|
[13] |
Duan N N, Wang M, Wang G X, et al. Research on theisolation and collection method of multi-channel temperature and power supply voltage under strong marine controlled source EMI[J]. IEEE Access, 2019 (7):6400-6411.
|
[14] |
杨福宝, 陈欣. USB接口在数据采集系统中的应用[J]. 制造业自动化, 2011,33(13):146-148.
|
[14] |
Yang F B, Chen X. The application of the USB interfac in data accessing system[J]. Manufacturing Automation(in Chinese), 2011,33(13):146-148.
|
[1] |
TIAN Hong-Jun, ZHANG Guang-Da, LIU Guang-Di, YOU Wen-Bing, ZHANG Ying-Wen. The application effect of the wide field electromagnetic method in geothermal exploration of Tailong area, northern Guizhou Province[J]. Geophysical and Geochemical Exploration, 2020, 44(5): 1093-1097. |
[2] |
GAO Xin-xing, ZHAO Bin, LU Li-yong, YU Jie, XU Ya. BEAM tunnel advanced geological prediction method based on optical fiber current sensing[J]. Geophysical and Geochemical Exploration, 2018, 42(2): 412-421. |
|
|
|
|