|
|
Construction and application of reference model to three-dimensional property inversion of gravity data in the mining area |
Jun-Jie ZHOU( ), Cong CHEN, Xiang YU, Ling-Ju GAO, Tao CHEN |
Beijing Research Institute of Uranium Geology,Beijing 100029,China |
|
|
Abstract Three-dimensional constrained inversion of gravity data in the mining area is an important technique for deep metallogenic environment exploration. The key point of the gravity inversion is the introduction of prior information. The reference model is a simple and effective constraint method, which can significantly improve the inversion quality. This paper discusses the construction of reference model in practice. Geological map, physical property statistics and interface information serve as parts of the import to obtain reliable results which accord with geological understanding. A reference model constraint was constructed and three-dimensional inversion of gravity data was performed in the Zhangmajing ore district. The inversion results are consistent with the surface outcrop information and the formation information revealed by the boreholes. The unconstrained results are quite different from the actual geological condition. Therefore, it is of high practical value to construct the reference model constraint to handle the inversion work. It is worthful and applicable in improving the gravity data inversion results.
|
Received: 17 February 2020
Published: 28 August 2020
|
|
|
|
|
|
Synthetic density model
|
|
Comparison of inverted results under different reference model constraints
|
模型单元 | 深度范围/m | 密度/(103 kg·m-3) | 剩余密度/(103 kg·m-3) | 浅层风化层 | 0~30 | 2.1 | -0.5 | 盖层 | 0~150 | 2.4 | 0 | 基底 | 50~200 | 2.9 | 0.3 |
|
Parameter setting of synthetic density model
|
|
Geological (a) and residual gravity anomaly map (b) of Zhangmajing deposit area
|
岩石名称 | 地层代号 | 收集资料/(103 kg·m-3) | 采样数 | 密度/(103 kg·m-3) | 变化范围 | 平均 | 流纹岩 | J3z3 | 2.41 | 65 | 2.37~2.49 | 2.34 | 凝灰岩 | J3z3 | 2.34 | 69 | 2.21~2.61 | 2.41 | 角粒熔岩 | J3z3-7 | 2.51 | 30 | 2.37~2.67 | 2.51 | 气孔状安山岩 | K1h1 | 2.5 | 31 | 2.32~2.64 | 2.41 | 灰褐色粗面岩 | J3z2 | 2.48 | 90 | 2.40~2.61 | 2.52 | 基底变质岩 | Arh | — | — | — | 2.69 | 次流纹斑岩 | Cλπ | 2.59 | — | — | — |
|
Rock density statistics of research area
|
|
Perspective(a) and sliced view(b) of inverted result without reference model constraint
|
|
Geological-map-based density digitization and 3D model construction
|
|
Strata-based model construction and fusion with surface model
|
|
perspective and sliced view of inverted result with reference model constraint
|
|
Comparison of inversion results on AA' profile
|
[1] |
朱裕振, 强建科, 王林飞, 等. 深埋铁矿磁测数据三维反演分析与找矿靶区预测[J]. 物探与化探, 2019,43(6):1182-1190.
|
[1] |
Zhu Y Z, Qiang J K, Wang L F, et al. Three-dimensional inversion analysis of magnetic data from deep buried iron ore and prediction of prospecting target area[J]. Geophysical and Geochemical Exploration, 2019,43(6):1182-1190.
|
[2] |
Yang M, Wang W Y, Welford J K, et al. 3D gravity inversion with optimized mesh based on edge and center anomaly detection[J]. Geophysics, 2019,84(3):1-62.
|
[3] |
Li Y G. 3D inversion of gravity gradiometer data[J]. SEG Expanded Abstracts, 1999,20(1):1470.
|
[4] |
姚长利, 郝天珧, 管志宁. 重磁反演约束条件及三维物性反演技术策略[J]. 物探与化探, 2002,26(4):253-257.
|
[4] |
Yao C L, Hao T Y, Guan Z N. Restrictions in gravity and magnetic inversions and technical strategy of 3D properties inversion[J]. Geophysical and Geochemical Exploration, 2002,26(4):253-257.
|
[5] |
Williams N C. Geologically-constrained UBC-GIF gravity and magnetic inversions with examples from the Agnew-Wiluna Greenstone Belt, Western Australia [D]. Canada:The University of British Columbia, Vancouver, 2008.
|
[6] |
祁光, 吕庆田, 严加永, 等. 先验地质信息约束下的三维重磁反演建模研究——以安徽泥河铁矿为例[J]. 地球物理学报, 2012,55(12):4194-4206.
|
[6] |
Qi G, Lv Q T, Yan J Y, et al. Geologic constrained 3D gravity and magnetic modeling of Nihe deposit—A case study[J]. Chinese Journal of Geophysics, 2012,55(12):4194-4206.
|
[7] |
兰学毅, 杜建国, 严加永, 等. 基于先验信息约束的重磁三维交互反演建模技术——以铜陵矿集区为例[J]. 地球物理学报, 2015,58(12):4436-4449.
|
[7] |
Lan X Y, Du J G, Yan J Y, et al. 3D gravity and magnetic interactive inversion modeling based on prior information: A case study of the Tongling ore concentration area[J]. Chinese Journal of Geophysics, 2015,58(12):4436-4449.
|
[8] |
郭冬, 严加永, 吕庆田, 等. 地质信息约束下的三维密度填图技术研究及应用[J]. 地质学报, 2014,88(4):763-776.
|
[8] |
Guo D, Yan J Y, Lyu Q T. 3D Density mapping constrained by geological information-model study and application[J]. Acta Geologica Sinica, 2014,88(4):763-776.
|
[9] |
罗凡, 严加永, 付光明. 基于已知信息约束的重磁三维反演在深部磁铁矿勘查中的应用——以安徽泥河铁矿为例[J]. 物探与化探, 2018,42(1):50-60.
|
[9] |
Luo F, Yan J Y, Fu G M. The application of gravity and magnetic three-dimensional inversion based on known information constraint in deep magnetite exploration: A case study of the Nihe iron deposit in Anhui Province[J]. Geophysical and Geochemical Exploration, 2018,42(1):50-60.
|
[10] |
陈长敬, 刘圣博, 黄理善. 音频大地电磁测深(AMT)约束下的重力三维反演应用研究——以越城岭岩体北缘隐伏岩体为例[J]. 地球物理学进展, 2019,34(4):1391-1397.
|
[10] |
Chen C J, Liu S B, Huang L S. 3D inversion of gravity under audio frequency magnetotelluric method (AMT) constraint: a case study of the concealed rock mass in the northern margin of Yuechengling rock mass[J]. Progress in Geophysics, 2019,34(4):1391-1397.
|
[11] |
陈辉, 邓居智, 吕庆田, 等. 九瑞矿集区重磁三维约束反演及深部找矿意义[J]. 地球物理学报, 2015,58(12):168-179.
|
[11] |
Chen H, Deng J Z, Lv Q T, et al. Three-dimensional inversion of gravity and magnetic data at Jiujiang Ruichang district and metallogenic indication[J]. Chinese Journal of Geophysics, 2015,58(12):4478-4489.
|
[12] |
Zhang Y, Yan J, Li F, et al. A new bound constraints method for 3-D potential field data inversion using Lagrangian multipliers[J]. Geophysical Journal International, 2015,201(1):267-275.
|
[13] |
Lelièvre P G, Oldenburg D W. A comprehensive study of including structural orientation information in geophysical inversions[J]. Geophysical Journal International, 2009,178(2):623-637.
|
[14] |
Rezaie M, Moradzadeh A, Kalate A N, et al. Fast 3D focusing inversion of gravity data using reweighted regularized lanczos bidiagonalization method[J]. Pure and Applied Geophysics, 2016,174(1):1-16.
|
[15] |
Zhou J J, Meng X H, Guo L H, et al. Three-dimensional cross-gradient joint inversion of gravity and normalized magnetic source strength data in the presence of remanent magnetization[J]. Journal of Applied Geophysics, 2015,119(8):51-60.
|
[16] |
Li Y G, Oldenburg D W. 3D inversion of gravity data[J]. Geophysics, 1998,63(1):109-119.
|
[17] |
郭鸿军, 马申坤. 河北省沽源县张麻井铀钼矿床控矿因素分析及外围找矿前景探讨[J]. 地质调查与研究, 2009,33(3):210-215.
|
[17] |
Guo H J, Ma S K. Analysis on Ore-control factors and peripheral prospecting for the Zhangmajing U-Mo deposit in Guyuan, Hebei Province[J]. Geological Survey and Research, 2009,33(3):210-215.
|
[18] |
彭朝晖, 施兴, 张亚东, 等. 冀西北地区重力场特征及对地质构造的再认识[J]. 物探与化探. 2007,31(2):106-109.
|
[18] |
Peng C H, Shi X, Zhang Y D, et al. Characteristics of the regional gravity field in northwest Hebei and their significance to geological tectonics[J]. Geophysical and Geochemical Exploration, 2007,31(2):106-109.
|
[19] |
陈聪, 周俊杰, 黄志新, 等. 460矿床关键控矿要素重磁异常特征及深部结构研究[J]. 铀矿地质, 2019,35(1):27-32.
|
[19] |
Chen C, Zhou J J, Huang Z X, et al. Research on gravity and magnetic anomaly of main ore controlling factors and deep structure of deposit 460[J]. Uranium Geology, 2019,35(1):27-32.
|
[1] |
XU Hai-Hong, HAN Xiao-Feng, YUAN Bing-Qiang, ZHANG Chun-Guan, WANG Bao-Wen, ZHAO Fei, DUAN Rui-Feng. Optimization of interpolation parameters for 1∶50 000 regular distribution gravity data based on radial basis function[J]. Geophysical and Geochemical Exploration, 2021, 45(6): 1539-1552. |
[2] |
WANG Guan-Xin, LUO Feng, ZHOU Xi-Hua, YAN Fang. Research on Kalman filter method for weak signal extraction of airborne gravity[J]. Geophysical and Geochemical Exploration, 2021, 45(1): 76-83. |
|
|
|
|