Please wait a minute...
E-mail Alert Rss
 
物探与化探  2020, Vol. 44 Issue (4): 919-927    DOI: 10.11720/wtyht.2020.0069
  2020年重磁方法理论及应用研究专题研讨会专栏 本期目录 | 过刊浏览 | 高级检索 |
基于自适应核密度的贝叶斯概率模型岩性识别方法研究
蔡泽园1,2,3(), 鲁宝亮1,2,3(), 熊盛青4, 王万银1,2,3
1.长安大学 重磁方法技术研究所,陕西 西安 710054
2.长安大学 地质工程与测绘学院,陕西 西安 710054
3.长安大学 西部矿产资源地质工程教育部重点实验室,陕西 西安 710054
4.中国自然资源航空物探遥感中心,北京 100083
Lithology identification based on Bayesian probability using adaptive kernel density
Ze-Yuan CAI1,2,3(), Bao-Liang LU1,2,3(), Sheng-Qing XIONG4, Wan-Yin WANG1,2,3
1. Insititute of Gravity and Magnetic Technology,Chang’an University,Xi’an 710054,China
2. College of Geology Engineering and Geomatics,Chang’an University,Xi’an 710054,China
3. Key Laboratory of Western China’s Mineral Resources and Geological Engineering,Ministry of Education,Chang’an University,Xi’an 710054,China
4. China Aero Geophysivey and Remote Sensing Center for Natural and Resources,Beijing 100083,China
全文: PDF(2274 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

准确地刻画岩石类型及其结构关系可以为能源矿产勘探、深部结构与构造等研究提供重要信息。目前利用地球物理技术可以通过不同岩石对应的物性参数(如密度、磁化率、电阻率、速度等)之间的差异进行岩性识别,但是不同岩石物性往往存在一定程度的重合,利用单一物性进行岩性识别的结果不够准确,因此利用多源数据进行岩性识别具有重要的意义。贝叶斯方法属于统计分类方法,依靠概率进行分类,概率密度的计算依靠样本属性之间的相互联系。基于此,我们将基于自适应核密度估计的贝叶斯概率模型引入到岩性识别中。该方法对于多类不同物性参数具有良好的适应能力,预测的岩性分类结果带有概率参数,可以存在模糊区间,提供多种岩性分类结果。该方法具有较强可扩展性,可以同时处理参数和非参数信息,使得已知地质信息以及物性参数得到最大化的利用。实验证明该方法的岩性识别结果较好,相比于传统高斯算法和固定带宽核密度估计,自适应带宽的核密度估计获得的分类结果更稳定、更准确。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
蔡泽园
鲁宝亮
熊盛青
王万银
关键词 贝叶斯岩性识别物性参数自适应核密度    
Abstract

Accurately characterizing rock types and their structural relationships can provide important information for researches on energy and mineral exploration, deep structure and tectonic, and so on. At present, geophysical data can be used to identify lithology through the differences between the corresponding physical property parameters of different rocks (such as density, susceptibility, resistivity, speed,etc.). However, different rock physical properties often coincide at a certain degree, on the other hand the result of lithological identification is not accurate enough when a single physical property is used. Therefore, it is of great significance to use multi-source data for lithological identification. Bayesian method belongs to the statistical classification methods, which relies on probability for classification, and the calculation of probability density depends on the correlation between sample attributes. On such a basis, the authors introduce the Bayesian probability model based on adaptive kernel density estimation to lithology identification. This method has good adaptability for many different types of physical property parameters and such the predicted lithology classification results with probability parameters, fuzzy intervals, and a variety of lithology classification results. This method has a strong scalability that can process both parametric and non-parametric information at the same time to maximally the known geological information and physical parameters. Synthetic models prove that this method has the ability to provide more stable and accurate results of lithology recognition compared with the methods of traditional Gaussian algorithm and fixed bandwidth kernel density estimation.

Key wordsBayesian    lithology identification    physical property parameter    adaptive kernel density
收稿日期: 2020-02-17      出版日期: 2020-08-28
:  P631  
基金资助:国家重点研发计划项目“典型覆盖区航空地球物理技术示范与处理解释软件平台开发”(2017YFC0602200);课题“航空地球物理数据综合处理解释方法研究及软件开发”(2017YFC0602202);国家自然科学基金项目(41904106)
通讯作者: 鲁宝亮
作者简介: 蔡泽园(1996-),女,长安大学硕士研究生,主要从事重磁数据处理与解释研究工作。Email:847330992@qq.com
引用本文:   
蔡泽园, 鲁宝亮, 熊盛青, 王万银. 基于自适应核密度的贝叶斯概率模型岩性识别方法研究[J]. 物探与化探, 2020, 44(4): 919-927.
Ze-Yuan CAI, Bao-Liang LU, Sheng-Qing XIONG, Wan-Yin WANG. Lithology identification based on Bayesian probability using adaptive kernel density. Geophysical and Geochemical Exploration, 2020, 44(4): 919-927.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2020.0069      或      https://www.wutanyuhuatan.com/CN/Y2020/V44/I4/919
Fig.1  不同带宽下概率密度函数曲线
岩石名称 密度/(kg·m-3) 磁化率/(10-5SI) 电阻率/(Ω·m)
板 岩 2630~2850 0~160 3~8
片麻岩 2570~2830 180~280 40~60
花岗岩 2580~2640 0~160 10~30
Table 1  模型参数统计
Fig.2  模型物性
a—模型密度;b—模型磁化率;c—模型电阻率
Fig.3  岩石分布
该模型共有8 690个样本点,分别选取250、435、870个点作为训练样本,其他点作为测试样本,图4~9分别为不同训练样本的物性参数交互图以及分类结果,表2是关于不同训练样本错误率统计表。
Fig.4  250点训练样本物性参数交互图
Fig.5  250点训练样本分类结果
a~f分别表示对于250个训练样本点的传统高斯分类、固定带宽的核密度估计、自适应带宽的核密度估计的贝叶斯分类结果以及其对应的概率分布
Fig.6  435点训练样本物性参数交互图
Fig.7  435点训练样本分类结果
a~f分别表示对于435个训练样本点的传统高斯分类、固定带宽的核密度估计、自适应带宽的核密度估计的贝叶斯分类结果以及其对应的概率分布
Fig.8  869点训练样本物性参数交互图
Fig.9  869点训练样本分类结果
a~f分别表示对于869个训练样本点的传统高斯分类、固定带宽的核密度估计、自适应带宽的核密度估计的贝叶斯分类结果以及其对应的概率分布
训练样本/个 错误率/%
传统高斯算法 固定带宽核密度估计 自适应带宽核密度估计
250 4.52 4.48 4.17
435 4.58 4.51 4.09
870 4.46 4.37 4.20
Table 2  模型错误率统计
Fig.10  预测分类结果
a~f依次为概率差在10%、20%、30%、40%、50%、60%时的分类结果
[1] Lortzer G J M, 杨谦, 译. 岩性反演的完整方法第一部分:理论[J]. 国外油气勘探, 1993,5(4):414-428.
[1] Lortzer G J M, Yang Q, Trans. Complete lithology inversion method of the first part theory[J]. Foreign Oil and Gas Exploration, 1993,5(4):414-428.
[2] 田玉昆, 周辉, 袁三一. 基于马尔科夫随机场的岩性识别方法[J]. 地球物理学报, 2013,56(4):1360-1368.
[2] Tian Y K, Zhou H, Yuan S Y. Lithologic discrimination method based on Markov random-field[J]. Chinese J. Geophycs, 2013,56(4):1360-1368.
[3] 靳军, 刘楼军, 邵雨, 等. 综合地球物理方法识别准噶尔盆地的岩性圈闭[J]. 石油地球物理勘探, 2002,37(3):287-290,299.
[3] Jin J, Liu L J, Shao Y, et al. Discussion on identifying method for identification of lithologic traps in Junggar Basin by comprehensive geophysical method[J]. Oil Geophysical Prospecting, 2002,37(3):287-290, 299.
[4] 洪忠, 张猛刚, 苏明军. 应用地震波形分类技术识别岩相的适用性和局限性[J]. 物探与化探, 2013,37(5):904-910.
[4] Hong Z, Zhang M G, Su M J. The applicability and limitations of the seismic wave-form classification technology to the identification of lithological facies[J]. Geophysical and Geochemical Exploration, 2013,37(5):904-910.
[5] Tjelmeland , Håkon , Luo X, et al. A Bayesian model for lithology/fluid class prediction using a Markov mesh prior fitted from a training image[J]. Geophysical Prospecting, 2019,67(3):609-623
[6] 宫清顺, 黄革萍, 孟祥超, 等. 三塘湖盆地火山岩岩性识别方法[J]. 中国石油勘探, 2012,17(3):37-41,6.
[6] Gong Q S, Huang G P, Meng X C, et al. Methods for lithology discrimination of volcanics in Santanghu Basin[J]. China Petroleum Exploration, 2012,17(3):37-41,6.
[7] 徐德龙, 李涛, 黄宝华, 等. 利用交会图法识别国外M油田岩性与流体类型的研究[J]. 地球物理学进展, 2012,27(3):1123-1132.
doi: 10.6038/j.issn.1004-2903.2012.03.037
[7] Xu D L, Li T, Huang B H, et al. Research on the identification of the lithology and fluid type of foreign Moilfield by using the crossplot method[J]. Progress in Geophysics, 2012,27(3):1123-1132 .
doi: 10.6038/j.issn.1004-2903.2012.03.037
[8] 李伟才, 姚光庆, 黄银涛, 等. 文昌13-1油田低阻油层测井岩性识别方法研究[J]. 石油天然气学报, 2012,34(12):81-85,7.
[8] Li W C, Yao G Q, Huang Y T, et al. Study on identification method of logging lithology for low resistivity reservoir in Wenchang 13-1 Oilfield[J]. Journal of Oil and Gas Technology, 2012,34(12):81-85,7.
[9] 范宜仁, 黄隆基, 代诗华. 交会图技术在火山岩岩性与裂缝识别中的应用[J]. 测井技术, 1999(1):53-56,64.
[9] Fan Y R, Huang L J, Dai S H. Application of crossplot technique to the determination of lithology composition and fracture identification of igneous rock[J]. Well Logging Technology, 1999(1):53-56,64.
[10] 田艳, 孙建孟, 王鑫, 等. 利用逐步法和Fisher判别法识别储层岩性[J]. 勘探地球物理进展, 2010,33(2):126-129, 134.
[10] Tian Y, Sun J M, Wang X, et al. Identifying reservoir lithology by step-by-step method and Fisher discriminant[J]. Progress in Geophysics, 2010,33(2):126-129,134.
[11] 王辉, 黎明碧, 唐勇, 等. 基于小波神经网络的ODP1148A井岩性预测[J]. 地球物理学进展, 2014,29(1):392-399.
doi: 10.6038/pg20140156
[11] Wang H, Li M B, Tang Y, et al. Tang YThe lithology prediction of ODP hole 1148A based on the wavelet neural network[J]. Progress in Geophysics, 2014,29(1):392-399.
doi: 10.6038/pg20140156
[12] 吴施楷, 曹俊兴. 基于连续限制玻尔兹曼机的支持向量机岩性识别方法[J]. 地球物理学进展, 2016,31(2):821-828.
[12] Wu S K, Cao J X. Lithology identification method based on continuous restricted Boltzmann machine and support vector machine[J]. Progress in Geophysics, 2016,31(2):821-828.
[13] 安鹏, 曹丹平. 基于深度学习的测井岩性识别方法研究与应用[J]. 地球物理学进展, 2018,33(3):1029-1034.
[13] An P, Cao D P. Research and application of logging lithology identification based on deep learning[J]. Progress in Geophysics, 2018,33(3):1029-1034.
[14] Corina A N, Hovda S. Automatic lithology prediction from well logging using kernel density estimation[J]. Journal of Petroleum Science and Engineering, 2018,170:664-674.
doi: 10.1016/j.petrol.2018.06.012
[15] 付光明, 严加永, 张昆, 等. 岩性识别技术现状与进展[J]. 地球物理学进展, 2017,32(1):26-40.
[15] Fu G M, Yan J Y, Zhang K, et al. Current status and progress of lithology identification technology[J]. Progress in Geophysics, 2017,32(1):26-40.
[16] 严加永, 吕庆田, 陈向斌, 等. 基于重磁反演的三维岩性填图试验——以安徽庐枞矿集区为例[J]. 岩石学报, 2014,30(4):1041-1053.
[16] Yan J Y, Lyu Q T, Chen X B, et al. 3D lithologic mapping test based on 3D inversion of gravity and magnetic data: A case study in Lu-Zong ore concentration district, Anhui Province[J]. Acta Petrologica Sinica, 2014,30(4):1041-1053.
[17] 刘云祥, 何展翔, 张碧涛, 等. 识别火成岩岩性的综合物探技术[J]. 勘探地球物理进展, 2006,29(2):115-118,5.
[17] Liu Y X, He Z X, Zhang B T, et al. Integrated geophysical techniques for identification of igneous rocks[J]. Progress in Exploration Geophysics, 2006,29(2):115-118,5.
[18] Paasche H, Eberle D. Automated compilation of pseudo-lithology maps from geophysical data sets: A comparison of Gustafson-Kessel and fuzzy c-means cluster algorithms[J]. Exploration Geophysics, 2011,42(4):275-285.
doi: 10.1071/EG11014
[19] Deng C, Pan H, Luo M. Joint inversion of geochemical data and geophysical logs for lithology identification in CCSD main hole[J]. Pure and Applied Geophysics, 2017,174(12):4407-4420.
[20] Konaté A A, Ma H L, Pan H P, et al. Lithology and mineralogy recognition from geochemical logging tool data using multivariate statistical analysis[J]. Applied Radiation and Isotopes, 2017,128:55-67.
doi: 10.1016/j.apradiso.2017.06.041 pmid: 28688247
[21] Keykhay Hosseinpppr M, Kohsary A-H, Hossein Morshedy A, et al. A machine learning-based approach to exploration targeting of porphyry Cu-Au deposits in the Dehsalm district, Eastern Iran[J]. Ore Geology Reviews, 2020,116(C):223-234.
[22] Rosenblatt M. Remarks on some nonparametric estimates of a density function[J]. Ann. Math. Statist., 1956,27(3):832-837.
[23] E. Parzen. On estimation of a probability density function and mode[J]. Ann. Math. Statist., 1962,33(3):1065-1076.
[24] Kazakos D. Choice of kernel function for density estimation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1980,2(3):255-258.
doi: 10.1109/tpami.1980.4767013 pmid: 21868899
[25] Bolance C, Guillen M, Nielsen J P. Kernel density estimation ofactuarial loss functions[J]. Mathematics and Economics, 2003,32(1):19-36.
[26] Fukunaga K, Hostetler L D. The estimation of the gradient of adensity function with applications in pattern recognition[J]. Trans Information Theory, 1975,21(2):32-40.
[27] 于传强, 郭晓松, 张安, 等. 基于估计点的滑动窗宽核密度估计算法[J]. 兵工学报, 2009,30(2):231-235.
[27] Yu C Q, Guo X S, Zhang A, et al. Slide Bandwidh Kernel Density Estimation Algorithm Based on Estimate Point[J]. Acta Armamentarii, 2009,30(2):231-235.
[1] 刘鸿洲, 王孟华, 张浩, 彭玲丽, 李雯, 张杰, 赵智鹏, 伍泽荆. 基于分频构形反演方法的河道砂精准预测——以华北冀中探区赵皇庄地区为例[J]. 物探与化探, 2021, 45(5): 1311-1319.
[2] 刘辉, 李静, 曾昭发, 王天琪. 基于贝叶斯理论面波频散曲线随机反演[J]. 物探与化探, 2021, 45(4): 951-960.
[3] 陈彦虎, 陈佳. 波形指示反演在煤层屏蔽薄砂岩分布预测中的应用[J]. 物探与化探, 2019, 43(6): 1254-1261.
[4] 肖占山, 赵云生, 赵宝成, 李强, 胡海涛, 邵琨, 姚春明. 基于岩石电性参数频散特性的储层参数评价方法[J]. 物探与化探, 2019, 43(5): 1105-1110.
[5] 李西子, 郭华, 韩松, 刘浩军, 郑强. 航磁三分量向上延拓在判断地质体物性参数上的应用研究[J]. 物探与化探, 2019, 43(4): 881-891.
[6] 马琦琦, 孙赞东, 杨柳鑫. 改进的贝叶斯迭代反演方法及其在白云岩致密储层识别的应用[J]. 物探与化探, 2019, 43(2): 234-243.
[7] 覃瑞东, 林振洲, 潘和平, 秦臻, 邓呈祥, 纪扬, 徐伟. 木里地区水合物及岩性测井识别方法[J]. 物探与化探, 2017, 41(6): 1088-1098.
[8] 周游, 高刚, 桂志先, 周倩, 蔡伟祥, 龚屹, 杨亚华. 灰质发育背景下识别浊积岩优质储层的技术研究——以东营凹陷董集洼陷为例[J]. 物探与化探, 2017, 41(5): 899-906.
[9] 邓呈祥, 高文利, 潘和平, 孔广胜, 方思南, 林振洲. 庐枞矿集区科学钻探的岩性识别方法[J]. 物探与化探, 2015, 39(6): 1144-1149.
[10] 张莹, 潘保芝. 支持向量机与微电阻率成像测井识别火山岩岩性[J]. 物探与化探, 2011, 35(5): 634-638,642.
[11] 孙歧峰, 白清云. 转换横波阻抗的求取[J]. 物探与化探, 2011, 35(1): 93-96.
[12] 陈冬, 魏修成, 季玉新.
卡拉沙依组薄互层岩性识别技术
[J]. 物探与化探, 2010, 34(3): 320-323.
[13] 张应文, 王亮, 王班友, 朱洪毅, 龙秀洪. 煤田测井中煤层的定性及定厚解释技术应用[J]. 物探与化探, 2008, 32(1): 49-52.
[14] 王向荣, 陈耿毅, 余钦范. 萨中开发区萨零组储层物性参数测井解释方法[J]. 物探与化探, 2005, 29(1): 22-24,27.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com