Please wait a minute...
E-mail Alert Rss
 
物探与化探  2020, Vol. 44 Issue (4): 734-741    DOI: 10.11720/wtyht.2020.1493
  地质调查·资源勘查 本期目录 | 过刊浏览 | 高级检索 |
航空大地电磁法在辽宁省丹东地区的应用
王志宏1,2(), 江民忠1,2, 彭莉红1,2, 程莎莎1,2
1.核工业航测遥感中心,河北 石家庄 050002
2.中核集团铀资源地球物理勘查技术中心(重点实验室),河北 石家庄 050002
The application of aeromagnetotelluric survey technology to Dandong area, Liaoning Province
WANG Zhi-Hong1,2(), JIANG Min-Zhong1,2, PENG Li-Hong1,2, CHENG Sha-Sha1,2
1. Airborne Survey and Remote Sensing Center of Nuclear Industry,Shijiazhuang 050002,China
2. Key Laboratory of Uranium Resources Geophysical Exploration Technology,Shijiazhuang 050002,China
全文: PDF(9668 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

本文简要介绍了航空大地电磁法原理、测量系统、倾子总散度、总相位旋转参数及二维、三维反演等;利用正演程序,计算了横向电性异常体倾子响应,结果表明倾子资料对横向电性分界面反映明显;最后结合实际地质情况,利用实测倾子及反演电阻率资料,推断解释了区内岩体、控矿构造的分布特征。实际应用表明,航空大地电磁法在探测断裂、岩体等方面具有较好的效果。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王志宏
江民忠
彭莉红
程莎莎
关键词 航空大地电磁法总散度总相位旋转倾子反演    
Abstract

This paper briefly introduces the principle of aeromagnetotelluric method, the measurement system, the calculation of tiltepper parameters and the two-imensional and three-dimensional inversion. By using the forward program, the tipplter parameters of the geoelectric model of the transverse electrical interface were calculated. The results show that the tilter data obviously reflect the transverse electrical interface. Finally, combined with the actual geological situation, the distribution characteristics of rock mass and ore-control structure in the area were found by using the measured tilter and inversion resistivity data, and some results were obtained, which verify the feasibility of the method.

Key wordsaeromagnetotelluric    total divergence    total phase rotation    tilter inversion
收稿日期: 2019-10-21      出版日期: 2020-08-28
:  P631  
基金资助:科技部国家重点研发计划项目“深地资源勘查开采”重点专项“华北克拉通成矿系统的深部过程与成矿机理”(2016YFC0600100)
作者简介: 王志宏(1973-),男,汉族,正高级工程师,毕业于中国地质大学(北京)地球物理工程专业,现主要从事航空电磁法生产研究工作。Email:wzhsjz@163.com
引用本文:   
王志宏, 江民忠, 彭莉红, 程莎莎. 航空大地电磁法在辽宁省丹东地区的应用[J]. 物探与化探, 2020, 44(4): 734-741.
WANG Zhi-Hong, JIANG Min-Zhong, PENG Li-Hong, CHENG Sha-Sha. The application of aeromagnetotelluric survey technology to Dandong area, Liaoning Province. Geophysical and Geochemical Exploration, 2020, 44(4): 734-741.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2020.1493      或      https://www.wutanyuhuatan.com/CN/Y2020/V44/I4/734
Fig.1  地电模型
Fig.2  模型倾子响应拟断面
Fig.3  工作区地质简图
1—第四系;2—侏罗-白垩系未分小岭组;3—盖县组;4—大石桥组;5—高家峪组;6—里尔峪组;7—白垩纪二长花岗岩;8—侏罗纪二长花岗岩;9—三叠纪二长花岗岩;10—古元古代花岗岩;11—花岗斑岩;12—实测正断层;13—实测逆断层;14—实测性质不明断裂;15—铅锌矿;16—金矿;17—航空大地电磁测线
Fig.4  空中接收线圈
Fig.5  基站接收线圈
Fig.6  航磁ΔT、150 Hz TD等值线平面
a—航磁ΔT;b—150 Hz TD;1—断裂;2—岩体分布范围;3—航空大地电磁测线
Fig.7  倾子实部总散度等值线平面
a—300 Hz;b—75 Hz;图例同图6
Fig.8  倾子实部总相位旋转等值线平面
a—300 Hz;b—75 Hz;图例同图6
Fig.9  反演电阻率深度切片等值线
a—深度200 m;b—深度1 000 m;图例同图6
Fig.10  L6480线二维、三维反演电阻率断面
[1] Labson V F, Becker A, Morrison H F, et al. Geophysical exploration with audio frequency natural magnetic fields[J]. Geophysics, 1985,50(4):656-664.
[2] Sattel D, Witherly K, Becken M. A brief analysis of ZTEM data from the Forrestania test site[R]. ASEG,WA, 2010.
[3] Legault J M, Zhao S K, Fitch R. ZTEM airborne AFMAG survey results over low sulphidation epithermal gold-silver vein systems at Gold Springs,south eastern Nevada[A]// 22nd International Geophysical Conference and Exhibition, 2012-02-26.
[4] Lo B, Legault , Kuzmin . Z-TEM (Airborne AFMAG) tests over unconformity uranium deposits[A]// 20th ASEG International Geophysical Conference & Exhibition, 2008.
[5] 陈清礼, 胡文宝, 李金铭, 等. 埋藏球体的倾子响应特征分析[J]. 石油天然气学报, 2007,29(3):75-78+505.
[5] Chen Q L, Hu W B, Li J M, et al. Analysis of the tipper response characteristics of buried sphere[J]. Journal of Oil and Gas Technology, 2007,29(3):75-78+505.
[6] 陈小斌, 赵国泽, 詹艳, 等. 磁倾子矢量的图示分析及其应用研究[J]. 地学前缘, 2004,11(4):626-636.
[6] Chen X B, Zhao G Z, Zhan Y, et al. Analysis of tipper visual vectors and its application[J]. Earth Science Frontiers, 2004,11(4):626-636.
[7] 童孝忠, 柳建新, 刘颖, 等. 利用有限单元法模拟二维MT倾子响应[J]. 吉林大学学报:地球科学版, 2011,41(s1):349-353.
[7] Tong X Z, Liu J X, Liu Y, et al. Calculating tipper response in two-dimensional magnetelluric using finite element method[J]. Journal of Jilin University:Earth Science Edition, 2011,41(sup1):349-353.
[8] 余年, 胡祥云, 王绪本, 等. 大地电磁二维倾子和视倾子模拟及其应用研究[J]. 西南交通大学学报, 2014,49(2):268-275.
[8] Yu N, Hu X Y, Wang X B, et al. Two-dimensional magnetotelluric tipper and apparent tipper simulation and application[J]. Journal of Southwest JiaoTong University, 2014,49(2):268-275.
[9] 林昌洪, 谭捍东, 佟拓. 倾子资料的三维共轭梯度反演研究[J]. 地球物理学报, 2011,5(4):1106-1113.
[9] Lin C H, Tan H D, Tong T. Three-dimensional conjugate inversion of tipper data[J]. Chinese Journal of Geophysics, 2011,54(4):1106-1113.
[10] 许智博. ZTEM起伏地形二维正反演研究 [D]. 北京:中国地质大学(北京), 2016.
[10] Xu Z B. Research of 2D ZTEM forward modeling and inversion with uneven topography[D]. Beijing: China University of Geosciences(Beijing), 2016.
[11] 李志强. ZTEM三维正反演研究 [D]. 北京:中国地质大学(北京), 2016.
[11] Li Z Q. Research on ZTEM three-dimensional forward modeling and inversion[D]. Beijing: China University of Geosciences(Beijing), 2016.
[12] 张铭, 刘长胜, 康利利, 等. 基于航空大地电磁倾子特征的二维大地结构探测方法[J]. 地球物理学进展, 2018,33(3):1303-1312.
[12] Zhang M, Liu C S, Kang L L, et al. Two-dimensional ground structure detection method based on the tipper characteristics of airborne magnetotelluric[J]. Progress in Geophysics, 2018,33(3):1303-1312.
[13] 赵丛, 朱琳, 李怀渊. 航空和地面天然场电磁法联合开展深部矿产资源勘探[J]. 物探与化探, 2016,40(2):333-341.
[13] Zhao C, Zhu L, Li H Y, et al. Deep mineral exploration by airborne and ground natural field electromagnetic method[J]. Geophysical and Geochemical exploration, 2016,40(2):333-341.
[14] 吴頔. 二维及三维倾子响应和异常体识别[D]. 长沙:中南大学, 2012.
[14] Wu D. 2D&3D tipper response and distinguishing to anomalous bodies[D]. >Changsha: Central South University, 2012.
[15] Holtham E, Oldenburg D W. Three-dimensional inversion of ZTEM data[J]. Geophysical Journal International, 2010,182:168-182.
[16] 谭捍东, 魏文博, 邓明, 等. 大地电磁法张量阻抗通用计算公式[J]. 石油地球物理勘探, 2004,39(1):113-116.
[16] Tan H D, Wei W B, Deng M, et al. General calculation formula of tensor impedance in magnetotelluric method[J]. Oil Geophysical prospecting, 2004,39(1):113-116.
[17] Lo B, Zang M. Numerical modeling of ZTEM (airborne AFMAG) responses to guide exploration strategies[A]// 78th Ann Internat Mtg,SEG,Expanded Abstracts, 2008,27(1):1098-1102.
[18] Wang T, Tan H D, Li Z Q, et al. 3D finite-difference modeling algorithm and anomaly features of ZTEM[J]. Applied Geophysics, 2016,13(3):553-560.
[19] 董存杰. 青城子铅锌金银多金属矿田矿床地质特征及成矿系统分析 [D]. 北京:中国地质大学(北京), 2012.
[19] Dong C J. Geological characteristics of the deposits and analysis of the mineralization system of Qingchenzi Pb-Zn-Au-Ag polymetallic ore field[D]. Beijing: China University of Geosciences(Beijing), 2012.
[20] 刘君. 青城子矿田构造变形结构及其控矿特征[J]. 辽宁地质, 1995(2):148-157.
[20] Liu J. Tectonic deformation texture and ore-controlling features of Qingchengzi orefield[J]. LiaoNing Geology, 1995(2):148-157.
[21] 黄宗瑶, 施林道, 方如恒. 华北陆块北缘及邻区有色金属矿床地质 [M]. 北京: 地质出版社, 1994.
[21] Huang Z Y, Shi L D, Fang R H. Geology of metal deposits in the northern margin of North China block and its adjacent[M]. Beijing: Geological Publishing House, 1994.
[1] 陈秀娟, 刘之的, 刘宇羲, 柴慧强, 王勇. 致密储层孔隙结构研究综述[J]. 物探与化探, 2022, 46(1): 22-31.
[2] 肖关华, 张伟, 陈恒春, 卓武, 王艳君, 任丽莹. 浅层地震技术在济南地下空间探测中的应用[J]. 物探与化探, 2022, 46(1): 96-103.
[3] 石磊, 管耀, 冯进, 高慧, 邱欣卫, 阙晓铭. 基于多级次流动单元的砂砾岩储层分类渗透率评价方法——以陆丰油田古近系文昌组W53油藏为例[J]. 物探与化探, 2022, 46(1): 78-86.
[4] 陈大磊, 王润生, 贺春艳, 王珣, 尹召凯, 于嘉宾. 综合地球物理探测在深部空间结构中的应用——以胶东金矿集区为例[J]. 物探与化探, 2022, 46(1): 70-77.
[5] 周能, 邓可晴, 庄文英. 基于线性放电法的多道脉冲幅度分析器设计[J]. 物探与化探, 2022, 46(1): 221-228.
[6] 吴燕民, 彭正辉, 元勇虎, 朱今祥, 刘闯, 葛薇, 凌国平. 一种基于差分接收的电磁感应阵列探头的设计与实现[J]. 物探与化探, 2022, 46(1): 214-220.
[7] 王猛, 刘媛媛, 王大勇, 董根旺, 田亮, 黄金辉, 林曼曼. 无人机航磁测量在荒漠戈壁地区的应用效果分析[J]. 物探与化探, 2022, 46(1): 206-213.
[8] 张化鹏, 钱卫, 刘瑾, 武立林, 宋泽卓. 基于伪随机信号的磁电法渗漏模型试验[J]. 物探与化探, 2022, 46(1): 198-205.
[9] 张建智, 胡富杭, 刘海啸, 邢国章. 煤矿老窑采空区地—井TEM响应特征[J]. 物探与化探, 2022, 46(1): 191-197.
[10] 张宇哲, 孟麟, 王智. 基于Gmsh的起伏地形下井—地直流电法正演模拟[J]. 物探与化探, 2022, 46(1): 182-190.
[11] 马德志, 王炜, 金明霞, 王海昆, 张明强. 海上地震勘探斜缆采集中鬼波产生机理及压制效果分析[J]. 物探与化探, 2022, 46(1): 175-181.
[12] 张洁. 基于拉伸率的3DVSP道集切除技术及应用[J]. 物探与化探, 2022, 46(1): 169-174.
[13] 丁骁, 莫思特, 李碧雄, 黄华. 混凝土内部裂缝对电磁波传输特性参数的影响[J]. 物探与化探, 2022, 46(1): 160-168.
[14] 崔瑞康, 孙建孟, 刘行军, 文晓峰. 低阻页岩电阻率主控因素研究[J]. 物探与化探, 2022, 46(1): 150-159.
[15] 陈亮, 付立恒, 蔡冻, 李凡, 李振宇, 鲁恺. 基于模拟退火法的磁共振测深多源谐波噪声压制方法[J]. 物探与化探, 2022, 46(1): 141-149.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com