Influence factor analysis of quantitative interpretation for gravity anomaly and its gradient tensor by DEXP
Feng QIU1,2, Jin-Song DU1,2,3(), Chao CHEN1,2
1. Institute of Geophysics and Geomatics, China University of Geosciences, Wuhan 430074, China 2. Hubei Subsurface Multi-scale Imaging Key Laboratory, China University of Geosciences, Wuhan 430074, China 3. State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074, China
快速成像反演方法是近几年重磁勘探定量解释的一个发展热点,由于其在计算过程中不需要加入先验信息,故而可以较为快速地估算场源的深度与密度等相关参量。DEXP(depth from extreme point)成像法由于在深度加权函数中考虑了构造指数,使得成像结果更为准确。笔者基于DEXP快速成像法的基本理论,首先,推导了重力异常及重力梯度张量的DEXP变换形式,并将其应用到场源解释之中;然后,采用理论模型试验,分别分析了数据的点距、误差、计算范围以及背景场对成像结果的影响;最后,将该成像方法应用于实测的全张量重力梯度数据,并与前人研究结果进行了对比与分析。理论模型试验与实际应用均表明:DEXP成像法能够有效压制数据噪声的影响,具有计算稳定性和准确性特点;数据的点距、计算范围和背景场均对DEXP成像结果具有一定的影响,因此在实际数据处理时,应该综合考虑它们对成像结果的影响,并且需要进行相关数据预处理以提高定量解释的精度。
Fast imaging inversion method has been a hotspot in quantitative interpretation of gravity and magnetic exploration in recent years. Because it does not need to add prior information in the calculation, it can quickly estimate the source depth, density and other related parameters. DEXP (Depth from Extreme point) imaging method adds the corresponding structural index to the depth scaling function in the calculation, making the imaging results more accurate. Based on the basic theory of the DEXP rapid imaging method, firstly, transformation formulas for gravity field and gravity gradient tensor regarding depth from the extreme point method were calculated and applied to the causative source interpretation in this paper. Then, through different synthetic models tests, the effects of sampling interval, data error, computing range and background field on the imaging results were analyzed, respectively. Finally, the imaging method was applied to the full gravity tensor gradient field data, and the results were compared with those provided by previous researchers in the literature. Both the synthetic tests and the field example show that the DEXP imaging method not only has good suppression on the noise in the observation data but also shows the characteristics of computing stability and accuracy. In addition, the data sampling interval, calculation range and background field all have certain influences on DEXP imaging results. Therefore, when actual field data are interpreted, it is necessary to comprehensively consider their influences on the imaging results and perform the corresponding pre-processing to improve the accuracy of the quantitative interpretation.
Li Y, Oldenburg D W. 3-D inversion of gravity data[J]. Geophysics, 1998,63(1):109-119.
doi: 10.1190/1.1444302
[2]
Fedi M, Rapolla A. 3-D inversion of gravity and magnetic data with depth resolution[J]. Geophysics, 1999,64(2):452-460.
doi: 10.1190/1.1444550
[3]
Zhdanov M S, Ellis R, Mukherjee S. Three-dimensional regularized focusing inversion of gravity gradient tensor component data[J]. Geophysics, 2004,69(4):925-937.
doi: 10.1190/1.1778236
[4]
Fedi M, Pilkington M. Understanding imaging methods for potential field data[J]. Geophysics, 2012,77(1):G13-G24.
doi: 10.1190/GEO2011-0078.1
[5]
Cribb J. Application of the generalized linear inverse to the inversion of static potential data[J]. Geophysics, 1976,41(6):1365-1369.
doi: 10.1190/1.1440686
[6]
Moreau F, Gibert D, Holschneider M, et al. Identification of sources of potential fields with the continuous wavelet transform: basic theory[J]. Journal of Geophysical Research: Solid Earth, 1999,104(B3):5003-5013.
[7]
Mauriello P, Patella D. Localization of maximum-depth gravity anomaly sources by a distribution of equivalent point masses[J]. Geophysics, 2001,66(5):1431-1437.
doi: 10.1190/1.1487088
[8]
Zhdanov M S, Liu X, Wilson G A, et al. Potential field migration for rapid imaging of gravity gradiometry data[J]. Geophysical Prospecting, 2011,59(6):1052-1071.
doi: 10.1111/j.1365-2478.2011.01005.x
[9]
Fedi M. DEXP: a fast method to determine the depth and the structural index of potential fields sources[J]. Geophysics, 2007,72(1):I1-I11.
doi: 10.1190/1.2399452
[10]
Guo L H, Meng X H, Shi L, et al. 3-D correlation imaging for gravity and gravity gradiometry data[J]. Chinese Journal of Geophysics, 2009,52(2):1098-1106.
[11]
Zhdanov M S, Liu X, Wilson G A, et al. 3D migration for rapid imaging of total-magnetic-intensity data[J]. Geophysics, 2012,77(2):J1-J5.
doi: 10.1190/GEO2011-0425.1
[12]
Zhou W, Liu C. Depth from extreme points method for gravity gradient tensor data[J]. Geophysical Prospecting, 2018,66(2):432-443.
[13]
Fedi M, Abbas M A. A fast interpretation of self-potential data using the depth from extreme points method[J]. Geophysics, 2013,78(2):E107-E16.
doi: 10.1190/GEO2012-0074.1
[14]
Abbas M A, Fedi M, Florio G. Improving the local wavenumber method by automatic DEXP transformation[J]. Journal of Applied Geophysics, 2014,111:250-255.
doi: 10.1016/j.jappgeo.2014.10.004
[15]
Fedi M, Florio G. Determination of the maximum-depth to potential field sources by a maximum structural index method[J]. Journal of Applied Geophysics, 2013,88:154-160.
doi: 10.1016/j.jappgeo.2012.10.009
[16]
Thompson D T. EULDPH: A new technique for making computer assisted depth estimates from magnetic data[J]. Geophysics, 1982,47(1):31-37.
doi: 10.1190/1.1441278
[17]
Geng M, Huang D, Yang Q, et al. 3D inversion of airborne gravity-gradiometry data using cokriging[J]. Geophysics, 2014,79(4):G37-G47.
doi: 10.1190/GEO2013-0393.1
[18]
袁园. 全张量重力梯度数据的综合分析与处理解释[D]. 长春: 吉林大学, 2015.
[18]
Yuan Y. Comprehensive analysis, processing and interpretation of the full tensor gravity gradient data[D]. Changchun: Jilin University, 2015.
Chen L N, Zeng Z F, Yuan Y, et al. Using ratio DEXP for depth imaging of gravity gradient data[J]. Global Geology, 2015,34(4):1113-1119.
[20]
Thompson S A, Eichelberger O H. Vinton salt dome, CalcasieuParish, Louisiana[J]. AAPG Bulletin, 1982,12(4):385-394.
[21]
Salem A, Masterton S, Campbell S, et al. Interpretation of tensor gravity data using an adaptive tilt angle method[J]. Geophysical Prospecting, 2013,61(5):1065-1076.
doi: 10.1111/1365-2478.12039
[22]
Oliveira Jr V C, Barbosa V C F. 3-D radial gravity gradient inversion[J]. Geophysical Journal International, 2013,195(2):883-902.
doi: 10.1093/gji/ggt307
Zhou W Y, Ma G Q, Hou Z L, et al. The study on the joint Euler deconvolution method of full tensor gravity data[J]. Chinese J. Geophysics, 2017,60(12):4855-4865.