Please wait a minute...
E-mail Alert Rss
 
物探与化探  2025, Vol. 49 Issue (5): 1190-1200    DOI: 10.11720/wtyht.2025.1394
  方法研究信息处理仪器研制 本期目录 | 过刊浏览 | 高级检索 |
用于氦光泵磁力仪的数字滤波器设计
郭琦1,2,3(), 邓肖丹1,2, 李学砚1,2(), 栾晓东1,2, 李萌1,2, 李冰1, 谢民英1, 范正一1
1.中国自然资源航空物探遥感中心,北京 100083
2.自然资源部 航空地球物理与遥感地质重点实验室,北京 100083
3.地球物理勘查技术创新中心,北京 100083
Design of a digital filter for optically pumped helium magnetometers
GUO Qi1,2,3(), DENG Xiao-Dan1,2, LI Xue-Yan1,2(), LUAN Xiao-Dong1,2, LI Meng1,2, LI Bing1, XIE Min-Ying1, FAN Zheng-Yi1
1. China Aero Geophysical Survey and Remote Sensing Center for Natural Resources, Beijing 100083, China
2. Key Laboratory of Airborne Geophysics and Remote Sensing Geology, Ministry of Land and Resources, Beijing 100083, China
3. Technology Innovation Center for Geophysical Exploration Technology, Beijing 100083, China
全文: PDF(6433 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

跟踪式氦光泵磁力仪在地球物理探测领域应用广泛,而滤波器作为国产磁力仪数字化进程中的关键模块,对改善和提升仪器性能指标至关重要。针对现有设计的局限性,本文设计并实现了一款结构简单、占用FPGA资源少、使用方便的多级滤波器结构,通过多级CIC滤波器和IIR滤波器级联的方式,内嵌于锁相放大器中,实现信号的提取与检测,并基于MATLAB仿真和FPGA实现,通过实验验证了滤波器的性能,可以实现磁测过程中基波和二次谐波的信号提取。此外,采用此滤波器结构的氦光泵磁力仪,灵敏度达到pT量级,满足《航空磁测技术规范》(DZ/T 0142—2010)的要求,为新一代航空磁力仪小型化发展提供了技术支撑。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭琦
邓肖丹
李学砚
栾晓东
李萌
李冰
谢民英
范正一
关键词 氦光泵磁力仪数字滤波器CIC滤波器IIR滤波器锁相放大器    
Abstract

The non-self-oscillating optically pumped helium magnetometer is widely used in the field of geophysical exploration. The filter, as a key module for the digitization of domestic magnetometers, plays a significant role in improving the performance of the magnetometer. In view of the limits of the current filter design, this study developed and implemented a multi-stage filter design characterized by a simple structure, low FPGA resource consumption, and user-friendly operation. Specifically, the multi-stage cascaded integrator comb (CIC) filter was cascaded with the infinite impulse response (IIR) filter, which was then embedded into a lock-in amplifier, thereby enabling signal extraction and detection. Through MATLAB simulation and FPGA implementation, the performance of this newly designed filter was verified, which can realize the extraction of the first and second harmonic signals during magnetic surveys. Furthermore, an optically pumped helium magnetometer configured with such a filter exhibited a picotesla (pT) sensitivity, satisfying the requirements of the Criterion of Aeromagnetic Survey. This new design provides technical support for the miniaturization of new-generation aerial magnetometers.

Key wordsoptically pumped helium magnetometer    digital filter    cascaded integrator comb (CIC)filter    infinite impulse response (IIR) filter    lock-in amplifier
收稿日期: 2024-09-23      修回日期: 2025-06-27      出版日期: 2025-10-20
ZTFLH:  P631  
基金资助:地球深部探测与矿产资源勘查国家科技重大专项项目(2024ZD1002800);中国自然资源航空物探遥感中心青年创新基金项目(2023YFL12)
通讯作者: 李学砚(1984-),男,正高级工程师,研究生,主要从事原子磁力传感器相关仪器研制工作。Email:leexy2604911@163.com
作者简介: 郭琦(1991-),女,工程师,研究生,主要从事电路仿真及航空磁力仪研发与维护工作。Email:guoqi_bit@163.com
引用本文:   
郭琦, 邓肖丹, 李学砚, 栾晓东, 李萌, 李冰, 谢民英, 范正一. 用于氦光泵磁力仪的数字滤波器设计[J]. 物探与化探, 2025, 49(5): 1190-1200.
GUO Qi, DENG Xiao-Dan, LI Xue-Yan, LUAN Xiao-Dong, LI Meng, LI Bing, XIE Min-Ying, FAN Zheng-Yi. Design of a digital filter for optically pumped helium magnetometers. Geophysical and Geochemical Exploration, 2025, 49(5): 1190-1200.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2025.1394      或      https://www.wutanyuhuatan.com/CN/Y2025/V49/I5/1190
Fig.1  氦光泵磁力仪系统框
Fig.2  磁共振(a)、基波(b)和二次谐波(c)曲线模型曲线对比
Fig.3  LIA基本结构
Fig.4  单级CIC滤波器结构
Fig.5  不同抽取倍数的单级CIC滤波器幅频特性
Fig.6  多级CIC滤波器级联的结构变换
Fig.7  相同抽取倍数的多级CIC滤波器归一化幅频特性
Fig.8  4级128倍抽取CIC滤波器归一化幅频特性
Fig.9  不同a取值对应一阶低通IIR滤波器的幅频特性
Fig.10  不同a取值对应一阶低通IIR滤波器的时域特性
Fig.11  不同fc取值对应一阶低通IIR滤波器幅频特性
Fig.12  一阶与二阶低通IIR滤波器对比
Fig.13  用于基波信号提取的锁相放大器
Fig.14  用于二次谐波信号提取的锁相放大器
Fig.15  二次谐波实测信号波形
Fig.16  基波实测信号波形
参数 斯坦福SR830锁相放大器 OE1300锁相放大器模块 苏黎世MFLI锁相放大器 本文设计锁相放大器
输入模式 单端/差分电压输入
电流输入
单端/差分电压输入
电流输入
单端/差分电压输入
电流输入
单端/差分电压输入
电流输入
满量程灵敏度 2nV~1V 1nV~5V 1nV~3V 1nV~5V
电源电压 100、120、220、240VAC 12VDC±5% 12VDC 100~240VAC,50/60Hz 9~36VDC
功率 40W 18W,不超过242 <40W 5~6W
通讯接口 GPIB、RS232 UART、网口 LAN、USB UART、网口等可选
尺寸 495.3cm×43.18cm×
13.34cm
裸机181.3mm×100mm×43.8mm
机壳204mm×110mm×46.8mm
28.3cm×23.2cm×10.2cm 可内嵌于
10cm×10cm×10cm机壳内
Table 1  本文设计的数字锁相放大器与市场相关产品的关键指标对比
Fig.17  将氦光泵磁力仪置于屏蔽筒内进行测试
Fig.18  氦光泵磁力仪进行连续测量结果
Fig.19  氦光泵磁力仪功率谱密度
Fig.20  氦光泵磁力仪的动态测试结果
[1] Tierney T M, Holmes N, Mellor S, et al. Optically pumped magnetometers:From quantum origins to multi-channel magnetoencephalography[J]. NeuroImage, 2019, 199(1):598-608.
[2] 彭翔, 郭弘. 光泵原子磁力仪技术[J]. 导航与控制, 2022, 21 (S2):101-121,198.
[2] Peng X, Guo H. Techniques in optically-pumped atomic magnetometer[J]. Navigation and Control, 2022, 21(S2):101-121,198.
[3] Alexandrov, E B. Recent progress in optically pumped magnetometers[J]. Physica Scripta, 2003,2003, T105(1):27-30.
[4] 居海华, 张乐, 夏忠, 等. 基于铯光泵磁力仪的地震地磁矢量测量系统[J]. 仪器仪表学报, 2023, 44(9):111-120.
[4] Ju H H, Zhang L, Xia Z, et al. Seismic geomagnetic vector measurement system based on optically pumped cesium magnetometer[J]. Chinese Journal of Scientific Instrument, 2023, 44(9):111-120.
[5] 张振宇. 氦光泵磁测技术研究[D]. 长春: 吉林大学, 2012.
[5] Zhang Z Y. Research on optically pumped Helium magnetic measurement technology[D]. Changchun: Jilin University, 2012.
[6] 连明昌. 氦光泵磁力仪数字化检测系统研制[D]. 长春: 吉林大学, 2013.
[6] Lian M C. Development of digital detection system for helium optically pumped helium magnetometer[D]. Changchun: Jilin University, 2013.
[7] United States Government. Code of Federal Regulation,Title 15,Subtitle B,Supplement No.1 to Part 774[EB/OL].(2022-04-18)[2024-09-23]. https://www.ecfr.gov/current/title-15/subtitle-B/chapter-VII/subchapter-C/part-774/appendix-Supplement%20No.%201%20to%20Part%20774
[8] 苑效宁, 马少华, 董鹤楠. 数字锁相放大器的算法设计与优化[J]. 东北电力技术, 2022, 43(1):41-44+49.
[8] Yuan X N, Ma S H, Dong H N. Algorithm design and optimization of digital phase locked amplifier[J]. Northeast Electric Power Technology, 2022, 43(1):41-44+49.
[9] 杜振辉, 张永明, 刘翰蔚, 等. 数字锁相放大器技术及光谱检测应用进展[J]. 测控技术, 2019, 38(11):1-8,19.
[9] Du Z H, Zhang Y M, Liu H W, et al. Progress in digital lock -In amplifier technology and spectral detection applications[J]. Measurement & Control Technology, 2019, 38(11):1-8,19.
[10] Zhang C, Liu H, Ge J, et al. FPGA-based digital lock-in amplifier with high-precision automatic frequency tracking[J]. IEEE Access, 2020,8:123114-123122.
[11] Chen H Z, Li Y, Ou L Y. A Digital lock-in amplifier based on adaptive kalman filter for rail defect detection[J]. Journal of Sensors, 2023(1):7112942.
[12] Macias-Bobadilla G, Rodríguez-Reséndiz J, Mota-Valtierra G, et al. Dual-phase lock-in amplifier based on FPGA for low-frequencies experiments[J]. Sensors, 2016, 16(3),379.
[13] Zhang Q S, Deng M, Guo J, et al. Development of a new seismic-data acquisition station based on system-on-a-programmable-chip technology[J]. Annals of Geophysics, 2013, 56(3):4.
[14] Wang S, Chen Z W, Zhang F, et al. The new CAS-DIS digital ionosonde[J]. Annals of Geophysics, 2013, 56(1):649-675
[15] 黄成功, 顾建松, 宗发保, 等. 氦光泵磁力仪探头设计和环路数字化研究[J]. 地球物理学报, 2019, 62(10):3675-3685.
doi: 10.6038/cjg2019M0503
[15] Huang C G, Gu J S, Zong F B, et al. Design of helium optical-pumping magnetometer probe and digital loop electronics circuit[J]. Chinese Journal of Geophysics, 2019, 62(10):3675-3685.
[16] 何朝博, 滕云田, 胡星星. 光泵磁力仪频率信号高精度测定技术实现[J]. 地震学报, 2021, 43(2):245-254,136.
[16] He Z B, Teng Y T, Hu X X. Realization of high-precision measurement technology for frequency signal of optically pumped magnetometer[J]. Acta Seismologica Sinica, 2021, 43(2):245-254,136.
[17] Oelsner G, IJsselsteijn R, Scholtes T, et al. Integrated optically pumped magnetometer for measurements within earth's magnetic field[J]. Physical Review Applied, 2022, 17(2):024-034.
[18] 郭璐璐. 数字锁相放大器的设计与实现[D]. 大连: 大连理工大学, 2013.
[18] Guo L L. Design and implementation of digital lock-in amplifter[D]. Dalian: Dalian University of Technology, 2013.
[19] 杜勇. 数字滤波器的MATLAB与FPGA实现:Altera/ Verilog版[M]. 北京: 电子工业出版社, 2015.
[19] Du Y. MATLAB and FPGA implementation of digital filter:Altera/Verilog version[M]. Beijing: Publishing House of Electronics Industry, 2015.
[20] 王梦远. 基于FPGA的IIR数字滤波器设计[D]. 南京: 东南大学, 2016.
[20] Wang M Y. Design of IIR digital filter based on FPGA[D]. Nanjing: Southeast University, 2016.
[21] Yao X K, Xin W, Jin Y, et al. Fast digital filter for frequency discriminator[C]// 2023 IEEE 3rd International Conference on Electronic Technology, Communication and Information (ICETCI),2023:456-461.
[22] 鄢建强, 崔敬忠, 缪培贤, 等. 原子磁力仪灵敏度标定方法研究[J]. 真空与低温, 2018, 24(4):259-265.
[22] Yan J Q, Cui J Z, Miao P X, et al. Study on the sensitivity calibration method of atomic magnetometer[J]. Vacuum and Cryogenics, 2018, 24(4):259-265.
[23] 中华人民共和国国土资源部. DZ/T 0142—2010航空磁测技术规范[S]. 北京: 中国标准出版社, 2010.
[23] Ministry of Land and Resources of the People’s Republic of China. DZ/T 0142—2010 Criterion of aeromagnetic survey[S]. Beijing: Standards Press of China, 2010.
[24] 李大明, 徐国华. 四阶差分法在高精度磁测中的应用[J]. 物探与化探, 1990, 14(1):42-46.
[24] Li D M, Xu G H. The application of quartic exponent difference method in high-precision megnetic survey[J]. Geophysical and Geochemical Exploration, 1990, 14(1):42-46.
[1] 邓肖丹, 李学砚, 周锡华, 段乐颖, 何辉. 基于DDS的氦光泵磁力仪射频场智能调频研究[J]. 物探与化探, 2023, 47(2): 464-469.
[2] 蔡劭琨, 吴美平, 张开东. 航空重力测量中FIR低通滤波器的比较[J]. 物探与化探, 2010, 34(1): 74-78.
[3] 蒋甫玉, 孟令顺, 张凤旭, 高丽坤. Chebyshev逼近滤波器在位场分离中的应用[J]. 物探与化探, 2008, 32(3): 311-315.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com