Please wait a minute...
E-mail Alert Rss
 
物探与化探  2023, Vol. 47 Issue (2): 464-469    DOI: 10.11720/wtyht.2023.1261
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
基于DDS的氦光泵磁力仪射频场智能调频研究
邓肖丹1,2(), 李学砚1,2(), 周锡华1,2, 段乐颖1,2, 何辉1,2
1.自然资源部 航空地球物理与遥感地质重点实验室,北京 100083
2.中国自然资源航空物探遥感中心,北京 100083
DDS-based intelligent modulation of the radio frequency field of helium optically pumped magnetometers
DENG Xiao-Dan1,2(), LI Xue-Yan1,2(), ZHOU Xi-Hua1,2, DUAN Le-Ying1,2, HE Hui1,2
1. Key Laboratory of Airborne Geophysics and Remote Sensing Geology, MNR, Beijing 100083, China
2. China Aero Geophysical Survey and Remote Sensing Center for Natural Resources, Beijing 100083, China
全文: PDF(2819 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

地磁场测量在基础地质研究、矿产资源勘查和军事探测等领域得到广泛应用,作为磁场测量核心之一的氦光泵磁力仪探头,其射频场调频精度是决定其磁测精度的重要影响因素。为实现易调节、高精度、高可靠性的调频信号,本文利用直接数字频率合成器(DDS)与微控制器(MCU)相结合方式,研究了磁力仪探头射频场智能精密调频技术,可灵活、实时、自动、精密地对磁力仪探头射频场进行调频。调频信号加载到氦光泵磁力仪系统的联调试验表明,磁力仪获得了稳定精密的磁共振信号,从而保证了磁力仪实现高精度的磁场测量。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
邓肖丹
李学砚
周锡华
段乐颖
何辉
关键词 直接数字频率合成氦光泵磁力仪调频    
Abstract

Geomagnetic field surveys have been widely applied in the fields such as basic geological study, mineral resource exploration, and military detection. A key tool for geomagnetic field surveys is helium optically pumped magnetometer probes. The frequency modulation precision of the radio frequency field used in the probes is an important factor affecting geomagnetic survey precision. To achieve frequency modulation signals featuring easy modulation, high precision, and high reliability, this study proposed an intelligent frequency modulation technology for the radio frequency field of the magnetometer probes by combining the direct digital frequency synthesizer (DDS) and the microcontroller unit (MCU). This technology can achieve flexible, real-time, automatic, and precise frequency modulation of the radio frequency field of the magnetometer probes. As revealed by the integration tests in which frequency modulation signals were loaded into the helium optically pumped magnetometer system, the magnetometer can obtain stable and precise magnetic resonance signals, thus ensuring high-precision geomagnetic field surveys.

Key wordsdirect digital frequency synthesis    helium optically pumped magnetometer    frequency modulation
收稿日期: 2022-05-26      修回日期: 2022-09-06      出版日期: 2023-04-20
ZTFLH:  P631  
基金资助:中国自然资源航空物探遥感中心青年创新基金(2020YFL01);国家重点研发计划专项课题“航空重磁综合观测系统集成与飞行验证”(2021YFB3900205)
通讯作者: 李学砚(1984-),男,高级工程师,研究生,主要研究领域为光电传感器与航磁仪器研发工作。Email:leexy2604911@163.com
引用本文:   
邓肖丹, 李学砚, 周锡华, 段乐颖, 何辉. 基于DDS的氦光泵磁力仪射频场智能调频研究[J]. 物探与化探, 2023, 47(2): 464-469.
DENG Xiao-Dan, LI Xue-Yan, ZHOU Xi-Hua, DUAN Le-Ying, HE Hui. DDS-based intelligent modulation of the radio frequency field of helium optically pumped magnetometers. Geophysical and Geochemical Exploration, 2023, 47(2): 464-469.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2023.1261      或      https://www.wutanyuhuatan.com/CN/Y2023/V47/I2/464
Fig.1  氦光泵磁力仪探头结构示意
Fig.2  总体设计框
Fig.3  STM32与AD9854连接示意
Fig.4  AD9854电路连接示意
Fig.5  解调电路连接示意
Fig.6  系统程序流程
Fig.7  扫频信号输出波形与频谱分析
Fig.8  调制信号解调波形(左:中心频率1 MHz;右:中心频率2.8 MHz)
Fig.9  单调频(a)、连续调频(b)磁共振信号
[1] 黄成功, 顾建松, 宗发保, 等. 氦光泵磁力仪探头设计和环路数字化研究[J]. 地球物理学报, 2019, 62(10):3675-3685.
[1] Huang C G, Gu J S, Zong F B, et al. Design of helium optical-pumping magnetometer probe and digital loop electronics circuit[J]. Chinese Journal of Geophysics, 2019, 62(10):3675-3685.
[2] 吕庆田, 张晓培, 汤井田, 等. 金属矿地球物理勘探技术与设备:回顾与进展[J]. 地球物理学报, 2019, 62(10):3629-3664.
[2] Lyu Q T, Zhang X P, Tang J T, et al. Review on advancement in technology and equipment of geophysical exploration for metallic deposits in China[J]. Chinese Journal of Geophysics, 2019, 62(10):3629-3664.
[3] 吴文福, 袁皓. 氦光泵磁力仪的应用与发展研究综述[J]. 声学与电子工程, 2016, 4(4):1-5,9.
[3] Wu W F, Yuan H. Review on application and development of helium photopump magnetometer[J]. Acoustics and Electronics Engineering, 2016, 4(4):1-5,9.
[4] 胡睿帆. 数字式氦光泵磁力仪的工程样机设计[D]. 长春: 吉林大学, 2017.
[4] Hu R F. Design of engineering prototype for digital Helium optically pumped magnetometer[D]. Changchun: Jilin University, 2017.
[5] 张振宇. 氦光泵磁测技术研究[D]. 长春: 吉林大学, 2012.
[5] Zhang Z Y. Research on optically pumped Helium magnetic measurement technology[D]. Changchun: Jilin University, 2012.
[6] 连明昌, 程德福, 周志坚, 等. 光泵磁敏传感器中FPGA调频器设计与实现[J]. 传感技术学报, 2012, 25(11):1618-1622.
[6] Lian M C, Cheng D F, Zhou Z J, et al. Design and realization of frequency modulator with FPGA for optically pumped magneto-dependent sensor[J]. Chinese Journal of Sensors and Actuators, 2012, 25(11):1618-1622.
[7] 张正, 张延华, 温晓伟, 等. 采用可调谐高Q有源电感的高优值VCO的研究[J]. 电子器件, 2021, 44(2):272-277.
[7] Zhang Z, Zhang Y H, Wen X W, et al. A high figure-of-merit VCO using tunable and high Q active inductor[J]. Chinese Journal of Electron Devices, 2021, 44(2):272-277.
[8] 沈辉, 薛兵, 唐朝阳, 等. 基于DDS技术的信号发生器设计[J]. 电子测量技术, 2020, 43(20):160-164.
[8] Shen H, Xue B, Tang C Y, et al. Design of signal generator based on DDS technology[J]. Electronic Measurement Technology, 2020, 43(20):160-164.
[9] 童建平, 杨建武. DDS在光泵磁力仪频率锁定中的应用[J]. 浙江工业大学学报, 2019, 47(4):448-452,468.
[9] Tong J P, Yang J W. The application of DDS in the frequency locking of optical pump magnetometer[J]. Journal of Zhejiang University of Technology, 2019, 47(4):448-452,468.
[10] 王浩军. 基于AD9854的信号源设计[J]. 舰船电子工程, 2018, 38(9):175-178.
[10] Wang H J. Design of signal source based on AD9854[J]. Ship Electronic Engineering, 2018, 38(9):175-178.
[11] 崔永俊, 杨卫鹏, 刘阳, 等. MIMO雷达正交线性调频信号源系统的设计[J]. 仪表技术与传感器, 2018(7):107-110.
[11] Cui Y J, Yang W P, Liu Y, et al. Design of orthogonal linear frequency modulation signal source system for MIMO radar[J]. Instrument Technique and Sensor, 2018(7):107-110.
[12] 邹彬, 董军堂, 杨延宁, 等. 基于云平台的温室大棚管理系统[J]. 传感器与微系统, 2021, 40(12):112-114,118.
[12] Zou B, Dong J T, Yang Y N, et al. Greenhouse management system based on cloud platform[J]. Transducer and Microsystem Technologies, 2021, 40(12):112-114,118.
[13] 万天才. AD650电压频率与频率电压转换器[J]. 国外电子元器件, 1999(7):1-3.
[13] Wan T C. AD650 voltage frequency to frequency voltage converter[J]. International Electronic Elements, 1999(7):1-3.
[14] 朱亚朋, 李鸿鹏, 霍德强, 等. 基于AD650的模拟信号光纤传输系统的设计[J]. 计算机测量与控制, 2012, 20(6):1662-1664,1668.
[14] Zhu Y P, Li H P, Huo D Q, et al. Design of analog signal transmission system based on AD650[J]. Computer Measurement & Control, 2012, 20(6):1662-1664,1668.
[1] 潘光玮, 冯泽东, 何源, 况丽丽, 赵国臣, 石峻峰. 基于直接数字合成技术的随钻电阻率测井仪器的设计与实现[J]. 物探与化探, 2012, 36(2): 253-255.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com