Please wait a minute...
E-mail Alert Rss
 
物探与化探  2025, Vol. 49 Issue (5): 1173-1189    DOI: 10.11720/wtyht.2025.0121
  方法研究信息处理仪器研制 本期目录 | 过刊浏览 | 高级检索 |
基于方位各向异性反演的裂缝型储层预测及流体识别方法
吴怡1(), 周长所1, 徐国贤1, 袁俊亮1, 宋晓麟2, 曾勇坚2(), 王群武2, 张奎2
1.中海油研究总院责任有限公司,北京 100015
2.北京普瑞斯安能源科技有限公司,北京 100015
A method for fracture density prediction and fluid identification of fractured reservoirs based on azimuthal anisotropic inversion
WU Yi1(), ZHOU Chang-Suo1, XU Guo-Xian1, YUAN Jun-Liang1, SONG Xiao-Lin2, ZENG Yong-Jian2(), WANG Qun-Wu2, ZHANG Kui2
1. Research Institute Co.,Ltd.,CNOOC,Beijing 100015,China
2. Beijing Precise Energy Technology Co.,Ltd.,Beijing 100015,China
全文: PDF(10779 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

基于方位地震数据的叠前各向异性地震反演作为裂缝型储层裂缝检测与流体识别的核心方法,为裂缝型储层的勘探开发提供了有效的指导作用。然而,随着勘探目标精细刻画要求的提升,常规约束下的各向异性反演方法的稳定性与可靠性受到挑战,且在发育高角度裂缝的中国东部裂缝型储层工区,缺乏有针对性的裂缝密度预测与流体识别的直接反演方法。为此,本文首先利用多井交会明确了用于流体识别的敏感因子;之后以孔隙弹性理论为指导,基于线性化HTI介质反射系数方程,推导得到了能够反映流体因子与裂缝密度随入射角及方位角变化的方位地震反射系数方程;最后,依托McMC优化算法,发展了一种L1范数约束的贝叶斯各向异性两步地震反演方法,以通过地震反演的手段实现了高角度裂缝的储层流体识别及裂缝密度的准确预测。反射系数方程精度分析证明了所推导方程的可行性,通过合成记录测试与实际工区应用,验证了所提出方法的合理性与可靠性,为发育高角度裂缝的储层裂缝密度预测与流体识别提供了新的方案。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴怡
周长所
徐国贤
袁俊亮
宋晓麟
曾勇坚
王群武
张奎
关键词 裂缝型储层各向异性反演流体识别裂缝密度    
Abstract

The pre-stack anisotropic seismic inversion based on azimuthal seismic data is a key method for fracture detection and fluid identification of fractured reservoirs,which provides effective guidance for exploration and development of fractured reservoirs.However,the anisotropic inversion method under conventional constraints encounters challenges in terms of stability and reliability,with higher requirements being placed for fine characterization of exploration targets.Moreover,there exists a lack of direct inversion methods targeting the fracture density prediction and fluid identification of the fractured reservoirs with high-angle fractures in East China.Therefore,this paper first identified the sensitive factors for fluid identification using multi-well crossplots.Then,based on the poroelasticity theory and the linearized reflection coefficient equation for horizontal transverse isotropy(HTI) media,an azimuthal seismic reflection coefficient equation was deduced,which can reflect the variations of fluid factors and fracture density with the angle of incidence and azimuth angle.Finally,based on the advanced Markov Chain Monte Carlo(MCMC) algorithm,a two-step Bayesian anisotropic seismic inversion method with the L1 norm constraint was proposed,achieving the fluid identification and accurate prediction of fracture density for reservoirs with high-angle fractures.The deduced reflection coefficient equation proved to be feasible through accuracy analysis.In addition,the method proved to be rational and reliable through synthetic seismogram testing and application in actual survey areas,offering a novel solution for the fracture density prediction and fluid identification in such reservoirs.

Key wordsfractured reservoir    anisotropic inversion    fluid identification    fracture density
收稿日期: 2025-04-15      修回日期: 2025-07-29      出版日期: 2025-10-20
ZTFLH:  P631.4  
基金资助:中国海洋石油集团有限公司“永乐8区古潜山钻井地质风险分析研究”项目(CCL2024RCPS0396PSN)
通讯作者: 曾勇坚(1991-),男,江西临川人,高级工程师,主要从事叠前地震预测工作。Email: zengyj91@163.com
作者简介: 吴怡(1987-),男,高级工程师,2013年毕业于中国石油大学(北京),就职于中海油研究总院有限责任公司,主要从事海上石油天然气勘探与开发等工作。Email:wuyi11@cnooc.com.cn
引用本文:   
吴怡, 周长所, 徐国贤, 袁俊亮, 宋晓麟, 曾勇坚, 王群武, 张奎. 基于方位各向异性反演的裂缝型储层预测及流体识别方法[J]. 物探与化探, 2025, 49(5): 1173-1189.
WU Yi, ZHOU Chang-Suo, XU Guo-Xian, YUAN Jun-Liang, SONG Xiao-Lin, ZENG Yong-Jian, WANG Qun-Wu, ZHANG Kui. A method for fracture density prediction and fluid identification of fractured reservoirs based on azimuthal anisotropic inversion. Geophysical and Geochemical Exploration, 2025, 49(5): 1173-1189.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2025.0121      或      https://www.wutanyuhuatan.com/CN/Y2025/V49/I5/1173
Fig.1  实际裂缝型储层工区各向同性背景弹性参数与纵波速度测井曲线交会
Mb/
GPa
μb/
GPa
ρb/
(g·cm-3)
f/GPa δN δT e
含气砂岩 36.25 13.28 2.60 6.60 0.16 0.08 0.03
泥岩 40.75 14.22 2.70 9.00 0.05 0.03 0.01
Table 1  双层裂缝型含气砂岩与泥岩模型参数
Mb/
GPa
μb/
GPa
ρb/
(g·cm-3)
f/GPa δN δT e
含水砂岩 37.72 13.28 2.62 8.20 0.16 0.08 0.03
泥岩 40.75 14.22 2.70 9.00 0.05 0.03 0.01
Table 2  双层裂缝型含水砂岩与泥岩模型参数
Fig.2  基于双层裂缝型含气砂岩与泥岩模型的反射系数方程精度对比及误差分析
Fig.3  基于双层裂缝型含水砂岩与泥岩模型的反射系数方程精度对比及误差分析
Fig.4  双层裂缝型含气砂岩与泥岩模型反演测试
Fig.5  双层裂缝型含水砂岩与泥岩模型反演测试
Fig.6  合成记录测试模型
Fig.7  无噪声合成地震记录
Fig.8  信噪比为10的合成地震记录
Fig.9  无噪声合成地震记录方位各向异性反演结果
Fig.10  信噪比为10合成地震记录方位各向异性反演结果
Fig.11  无噪声方位各向异性反演结果与模型误差绝对值
Fig.12  信噪比为10的方位各向异性反演结果与模型误差绝对值
Fig.13  实际裂缝型储层工区叠前方位地震剖面
Fig.14  基于新贝叶斯两步方位地震反演方法的反演结果
Fig.15  基于常规同步方位地震反演方法的反演结果
Fig.16  基于新贝叶斯两步方位地震反演方法的流体因子f (a)和裂缝密度 e(b)反演结果沿层切片
[19] 严彬, 张广智, 李林, 等. 裂缝诱导的TTI介质固液解耦反射系数方程及裂缝和流体参数反演方法[J]. 地球物理学报, 2023, 66(10):4349-4369.
[19] Yan B, Zhang G Z, Li L, et al. Fracture-induced fluid-matrix decoupled reflection coefficient equation for TTI media and inversion method for fracture and fluid parameters[J]. Chinese Journal of Geophysics, 2023, 66(10):4349-4369.
[20] Schoenberg M, Sayers C M. Seismic anisotropy of fractured rock[J]. Geophysics, 1995, 60(1):204-211.
[21] Shaw R K, Sen M K. Born integral,stationary phase and linearized reflection coefficients in weak anisotropic mediaFree[J]. Geophysical Journal International, 2004, 158(1):225-238.
[22] Russell B H, Gray D, Hampson D P. Linearized AVO and poroelasticity[J]. Geophysics, 2011, 76(3):C19-C29.
[23] Gassmann F. Elastic waves through a packing of spheres[J]. Geophysics, 1951, 16(4):673-685.
[24] Bakulin A, Grechka V, Tsvankin I. Estimation of fracture parameters from reflection seismic data:Part I:HTI model due to a single fracture set[J]. Geophysics, 2000, 65(6):1788-1802.
[25] 彭国民, 刘展. 基于q-高斯分布和零阶最小熵正则化的三维重力聚焦反演[J]. 地球物理学报, 2022, 65(5):1866-1882.
[25] Peng G M, Liu Z. 3D focusing inversion of gravity data based on q-Gaussian distribution and zeroth-order minimum entropy regularization[J]. Chinese Journal of Geophysics, 2022, 65(5):1866-1882.
[26] Sambridge M, Mosegaard K. Monte Carlo methods in geophysical inverse problems[J]. Reviews of Geophysics, 2002, 40(3):3-1-3-29.
[1] 裴正林, 董玉珊, 彭苏萍. 裂隙煤层弹性波场方位各向异性特征数值模拟研究[J]. 石油地球物理勘探, 2007, 42(6):665-672,733,606-607.
[1] Pei Z L, Dong Y S, Peng S P. Numeric simulation of azimuth anisotropic characters of elastic wavefield in fractural coal seams[J]. Oil Geophysical Prospecting, 2007, 42(6):665-672,733,606-607.
[2] Ali A, Jakobsen M. On the accuracy of Rüger's approximation for reflection coefficients in HTI media:Implications for the determination of fracture density and orientation from seismic AVAZ dataFree[J]. Journal of Geophysics and Engineering, 2011, 8(2):372-393.
[3] 撒利明, 董世泰, 李向阳. 中国石油物探新技术研究及展望[J]. 石油地球物理勘探, 2012, 47(6):1014-1024,844.
[3] Sa L M, Dong S T, Li X Y. Research and perspective on new geophysical technologies and methods in China[J]. Oil Geophysical Prospecting, 2012, 47(6):1014-1024,844.
[4] 薛姣, 顾汉明, 蔡成国. 准静态孔缝介质广义裂隙弱度研究[J]. 石油地球物理勘探, 2015, 50(6):1146-1153,1033-1034.
[4] Xue J, Gu H M, Cai C G. General fracture weaknesses for quasi-static porous fractured media[J]. Oil Geophysical Prospecting, 2015, 50(6):1146-1153,1033-1034.
[5] 印兴耀, 张洪学, 宗兆云. OVT数据域五维地震资料解释技术研究现状与进展[J]. 石油物探, 2018, 57(2):155-178.
doi: 10.3969/j.issn.1000-1441.2018.02.001
[5] Yin X Y, Zhang H X, Zong Z Y. Research status and progress of 5D seismic data interpretation in OVT domain[J]. Geophysical Prospecting for Petroleum, 2018, 57(2):155-178.
doi: 10.3969/j.issn.1000-1441.2018.02.001
[6] 王赟, 文鹏飞, 李宗杰, 等. 多分量油气地震勘探技术急需解决的几个问题[J]. 石油地球物理勘探, 2020, 55(6):13.
[6] Wang Y, Wen P F, Li Z J, et al. Several urgent problems in multi-component seismic exploration for oil and gas[J]. Oil Geophysical Prospecting, 2020, 55(6):13.
[7] 王延光, 尚新民, 芮拥军. 单点高密度地震技术进展、实践与展望[J]. 石油物探, 2022, 61(4):571-590.
doi: 10.3969/j.issn.1000-1441.2022.04.001
[7] Wang Y G, Shang X M, Rui Y J. Progress, practice,and prospect of single-sensor high-density seismic technology[J]. Geophysical Prospecting for Petroleum, 2022, 61(4):571-590.
[8] Li Y, Guo Z, Liu C. Characterization of fluid-saturated fractures based on seismic azimuthal anisotropy dispersion inversion method[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024,62:5918017.
[9] Chen H Z, Ji Y X, Innanen K A. Estimation of modified fluid factor and dry fracture weaknesses using azimuthal elastic impedance[J]. Geophysics, 2018, 83(1):WA73-WA88.
[10] Chen H Z, Chen T S, Innanen K A. Estimating tilted fracture weaknesses from azimuthal differences in seismic amplitude data[J]. Geophysics, 2020, 85(3):R135-R146.
[11] Ji L X, Zong Z Y, Yang Y M. Azimuthal amplitude difference inversion constrained by azimuth velocity anisotropy[J]. Geophysical Journal International, 2022, 233(1):549-563.
[12] Zeng Y J, Zong Z Y, Pan X P. Azimuthal seismic inversion for effective elastic orthorhombic anisotropic media formed by two orthogonal sets of vertical fractures[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023,61:5919813.
[13] Liu H, Pan X, Liu Z, et al. Azimuthal prestack seismic inversion for fracture parameters based on L1-2 norm regularization[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024,62:5922410.
[14] Zong Z Y, Yin X Y, Wu G C. Elastic impedance parameterization and inversion with Young's modulus and Poisson's ratio[J]. Geophysics, 2013, 78(6):N35-N42.
[15] Chen X, Zong Z Y, Qu X Y. P-wave reflectivity parameterization and nonlinear inversion in terms of Young's modulus and Poisson ratio[J]. Interpretation, 2022, 10(3):T415-T428.
[16] Pan X P, Zhang G Z. Estimation of fluid indicator and dry fracture compliances using azimuthal seismic reflection data in a gas-saturated fractured reservoir[J]. Journal of Petroleum Science and Engineering, 2018,167:737-751.
[17] Feng Y W, Zong Z Y, Zhang G Z, et al. PP-wave reflection coefficient equation for HTI media incorporating squirt flow effect and frequency-dependent azimuthal AVO inversion for anisotropic fluid indicator[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024,62:5906212.
[18] Zuo Y H, Zong Z Y, Li K, et al. Bayesian AVOAz inversion of fluid and anisotropy parameters using Gibbs sampling with AISM algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024,62:4512815.
[27] Global optimization methods in geophysical inversion-global optimization methods in geophysical inversion[M]. Cambridge, UK: Cambridge University Press, 2013.
[1] 曹英权, 王雷, 鲁法伟, 张国栋, 于喜, 杨毅, 袁胜斌, 景社. 油基钻井液环境下的复杂流体识别方法——以东海西湖凹陷为例[J]. 物探与化探, 2025, 49(3): 599-608.
[2] 王永刚, 姚宗惠, 杨骐羽, 李景叶, 宋炜. 考虑孔隙形状的碳酸盐岩储层流体综合识别方法研究及应用——以鄂尔多斯盆地奥陶系马家沟组四段为例[J]. 物探与化探, 2025, 49(1): 177-188.
[3] 刘伟男, 管耀, 刘道理, 石磊, 宋伟. 低对比度油层测录井综合识别方法研究与应用——以珠江口盆地陆丰油田为例[J]. 物探与化探, 2024, 48(3): 573-583.
[4] 张婧, 汪勇, 赵慧言, 衡德, 黄君, 张晓丹, 王文文, 贺燕冰. 基于全局自适应MCMC算法的裂缝型储层缝隙流体因子叠前地震反演[J]. 物探与化探, 2024, 48(1): 105-112.
[5] 刘浩杰, 陈雨茂, 王延光, 宗兆云, 吴国忱, 侯庆杰. 粘弹介质叠前四参数同步反演及应用[J]. 物探与化探, 2021, 45(1): 140-148.
[6] 陈志刚, 马文杰, 赵宏忠, 许凤, 崔全章, 马辉, 孙星. 利用曲率类属性预测储层裂缝的流程及应用实例[J]. 物探与化探, 2020, 44(5): 1201-1207.
[7] 李英, 秦德海. 基于流体替代的敏感弹性参数优选及流体识别在渤海B油田的应用[J]. 物探与化探, 2018, 42(4): 662-667.
[8] 田瀚, 杨敏. 碳酸盐岩缝洞型储层测井评价方法[J]. 物探与化探, 2015, 39(3): 545-552.
[9] 李红梅. 弹性参数直接反演技术在储层流体识别中的应用[J]. 物探与化探, 2014, 38(5): 970-975.
[10] 黄捍东, 汪佳蓓, 郭飞. 敏感参数分析在叠前反演流体识别中的应用[J]. 物探与化探, 2012, 36(6): 941-946.
[11] 杨童. 基于EI-Fatti弹性波阻抗反演的流体识别[J]. 物探与化探, 2012, 36(3): 360-366.
[12] 张广智, 郑静静, 印兴耀, 张作胜, 武国虎. 基于Curvelet变换的角度流体因子提取技术[J]. 物探与化探, 2011, 35(4): 505-510.
[13] 李国福, 李录明, 李才明. 三维定量交会技术在流体预测中的研究[J]. 物探与化探, 2011, 35(3): 398-401.
[14] 谢风猛. 古潜山裂缝储层预测新方法[J]. 物探与化探, 2010, 34(2): 233-236.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com