Please wait a minute...
E-mail Alert Rss
 
物探与化探  2025, Vol. 49 Issue (3): 599-608    DOI: 10.11720/wtyht.2025.1196
  地质调查资源勘查 本期目录 | 过刊浏览 | 高级检索 |
油基钻井液环境下的复杂流体识别方法——以东海西湖凹陷为例
曹英权1(), 王雷2, 鲁法伟2, 张国栋2, 于喜1, 杨毅1, 袁胜斌1, 景社1
1.中法渤海地质服务有限公司,天津 300450
2.中海石油(中国)有限公司 上海分公司,上海 200335
Identification methods for complex fluids under oil-based drilling fluid conditions: A case study of the Xihu Sag in the East China Sea
CAO Ying-Quan1(), WANG Lei2, LU Fa-Wei2, ZHANG Guo-Dong2, YU Xi1, YANG Yi1, YUAN Sheng-Bin1, JING She1
1. China France Bohai Geoservices Co., Ltd., Tianjin 300450, China
2. Shanghai Branch of CNOOC, Ltd., Shanghai 200335, China
全文: PDF(5444 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

随着油基钻井液在西湖凹陷的广泛应用,储层的测、录井响应特征发生改变,复杂流体识别难度增大,基于水基钻井液的流体评价方法不再适用。为此,基于凝析气层和轻质油层的气测录井组分、地化轻烃特征参数及谱图形态差异性特征,提出了适用于油基钻井液的复杂流体识别方法。试验结果表明:①在数据处理和敏感参数优选的基础上,通过对10种气测衍生参数进行Pearson相关性分析,利用敏感参数Hc、Hb建立了识别图版,可以定性区分凝析气和轻质油;②利用与气油比相关性最高的参数Hc与泵抽取样、地层测试数据进行拟合,建立气油比定量计算模型,相关性系数大于0.98,可以在随钻过程中对气油比进行定量预测;③凝析气层和轻质油层的地化轻烃谱图形态特征具有明显差异,凝析气层表现为高nC1~nC4,nC5以后正构烷烃缺失,异构烷烃、芳香烃含量检测范围较少,出峰不齐全、峰值较低;而轻质油层具有正构烷烃nC1~nC9组分齐全,异构烷烃、芳香烃峰值较高的特点;④基于凝析气层和轻质油层的轻烃比值参数差异,优选气指数Ig、油指数Io建立识别图版,可以有效区分两种流体。通过气测录井和地化轻烃两种方法的相结合,可以有效解决西湖凹陷油基钻井液条件下的流体识别难题,具有较强的推广应用价值。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
曹英权
王雷
鲁法伟
张国栋
于喜
杨毅
袁胜斌
景社
关键词 油基钻井液气测录井地化录井流体识别西湖凹陷    
Abstract

With the wide application of oil-based drilling fluids in the Xihu Sag, the log response characteristics of reservoirs have changed. This increases the difficulty in identifying complex fluids, rendering fluid assessment methods based on water-based drilling fluids unapplicable. Therefore, this study developed a complex fluid identification method suitable for oil-based drilling fluids based on differences in the gas logging composition, the geochemical characteristic parameters of light hydrocarbons, and spectral morphologies between condensate gas and light oil reservoirs. The results are as follows: (1) Based on the data processing and the selection of optimal sensitive parameters, Pearson correlation analysis was conducted on 10 gas logging-derived parameters. Then, chart boards were developed using sensitive parameters Hc and Hb, allowing for qualitative distinguishment between condensate gas and light oil; (2) Through the fitting of Hc, the parameter with the highest correlation with the gas/oil ratio, to the pump sampling and stratigraphic test data, this study established a quantitative calculation model for the gas/oil ratio, yielding a correlation coefficient exceeding 0.98. Therefore, the model can be used to quantitatively predict the gas/oil ratio while drilling; (3) Significant differences can be observed in the morphological characteristics of geochemical light hydrocarbon spectra between condensate gas and light oil reservoirs. Specifically, the condensate gas reservoirs exhibited high nC1 to nC4 contents, an absence of normal alkanes beyond nC5, and incomplete and low peaks of iso-alkane and aromatic hydrocarbons due to small detection ranges. In contrast, the light oil reservoirs displayed complete n-alkanes components from nC1 to nC9, along with higher peaks of iso-alkanes and aromatics hydrocarbons. (4) Based on the differences in light hydrocarbon ratios between condensate gas and light oil reservoirs, gas index Ig and oil index Io were selected to establish chart boards, which can effectively distinguish both fluids. The combination of gas logging and geochemical light hydrocarbon analysis can effectively overcome the challenge of fluid identification under the condition of oil-based drilling fluids in the Xihu Sag, deserving wide application.

Key wordsoil-based drilling fluid    gas logging    geochemical logging    fluid identification    Xihu Sag
收稿日期: 2024-05-08      修回日期: 2024-09-19      出版日期: 2025-06-20
ZTFLH:  TE142  
基金资助:中国海洋石油有限公司“十四五”重大科技项目“海上深层/超深层油气勘探技术”(KJGG2022-0405)
作者简介: 曹英权(1994-),男,朝鲜族,辽宁盘锦人,硕士研究生,研究方向为储层地质学、录井技术与解释评价。Email:455083448@qq.com
引用本文:   
曹英权, 王雷, 鲁法伟, 张国栋, 于喜, 杨毅, 袁胜斌, 景社. 油基钻井液环境下的复杂流体识别方法——以东海西湖凹陷为例[J]. 物探与化探, 2025, 49(3): 599-608.
CAO Ying-Quan, WANG Lei, LU Fa-Wei, ZHANG Guo-Dong, YU Xi, YANG Yi, YUAN Sheng-Bin, JING She. Identification methods for complex fluids under oil-based drilling fluid conditions: A case study of the Xihu Sag in the East China Sea. Geophysical and Geochemical Exploration, 2025, 49(3): 599-608.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2025.1196      或      https://www.wutanyuhuatan.com/CN/Y2025/V49/I3/599
Fig.1  B-2井综合录井
Fig.2  A-1井轻质油样品与白油样品对比
Fig.3  白油的地化热解谱
Fig.4  白油的地化热蒸发烃气相色谱
Fig.5  Pearson相关系数计算结果
Fig.6  气测录井油气识别图版
Fig.7  气测录井气油比预测模型
Fig.8  不同气油比油气层的地化轻烃谱
Fig.9  地化轻烃油气识别图版
Fig.10  E2井平湖组综合录井(a)及地化轻烃图谱(b)
Fig.11  F1井平湖组综合录井(a)及地化轻烃图谱(b)
[1] 鲁法伟, 王猛, 蔡建荣, 等. 油基钻井液环境下污染率评价对油藏流体分布认识的影响[J]. 断块油气田, 2021, 28(2):219-223.
[1] Lu F W, Wang M, Cai J R, et al. OBM contamination evaluation to understand reservoir fluid distribution[J]. Fault-Block Oil & Gas Field, 2021, 28(2):219-223.
[2] 张国栋, 鲁法伟, 陈波, 等. 油基钻井液条件下西湖凹陷低孔低渗储层流体性质随钻快速识别方法[J]. 石油钻探技术, 2019, 47(5):116-120.
[2] Zhang G D, Lu F W, Chen B, et al. A fluid properties while drilling rapid identification method under oil-based drilling fluid conditions for low porosity and low permeability reservoirs in the Xihu Sag[J]. Petroleum Drilling Techniques, 2019, 47(5):116-120.
[3] 张浩, 倪利平, 罗刚, 等. 油基钻井液侵入对核磁共振测井响应影响的实验研究[J]. 科学技术与工程, 2023, 23(12):5013-5021.
[3] Zhang H, Ni L P, Luo G, et al. Experimental study on the effect of oil-based drilling fluid invasion on NMR logging[J]. Science Technology and Engineering, 2023, 23(12):5013-5021.
[4] 明显森, 刘胜玺, 莫裕宾. 国产油基钻井液CQ-WOM与哈里伯顿油基钻井液INNOVERT应用分析[J]. 科学技术与工程, 2016, 16(31):158-162.
[4] Ming X S, Liu S X, Mo Y B. Applied analysis of domestic oil-based drilling fluid CQ-WOM and halliburton oil-base drilling fluid INNOVERT[J]. Science Technology and Engineering, 2016, 16(31):158-162.
[5] 魏峰, 李跃林. 基于测录井资料的复杂流体性质识别技术[J]. 断块油气田, 2020, 27(6):760-765.
[5] Wei F, Li Y L. Identification technology of complex fluid properties based on logging and mud logging data[J]. Fault-Block Oil & Gas Field, 2020, 27(6):760-765.
[6] 熊亭. 实时流体录井技术在惠州26-6构造的应用[J]. 科学技术与工程, 2023, 23(26):11188-11194.
[6] Xiong T. Application of the fluids logging & analysis in real-time technology in Huizhou 26-6 structure[J]. Science Technology and Engineering, 2023, 23(26):11188-11194.
[7] 刘春锋, 蒋一鸣, 李宁, 等. 西湖凹陷西次凹古近系花港组—平湖组深层油气成藏过程[J]. 地质学报, 2024, 98(1):231-246.
[7] Liu C F, Jiang Y M, Li N, et al. Hydrocarbon accumulation process in the deep of Paleogene Huagang Formation and Pinghu Formation in the western subsag of Xihu sag[J]. Acta Geologica Sinica, 2024, 98(1):231-246.
[8] 胡云, 刘宝生, 汪芯, 等. 基于气测烃组分的储层流体相快速识别评价方法——以渤中19-6构造为例[J]. 石油钻采工艺, 2018, 40(S1):44-47.
[8] Hu Y, Liu B S, Wang X, et al. A rapid identification and evaluation method for reservoir fluid phases based on gas logging hydrocarbon components:Taking the Bozhong 19-6 structure as an example[J]. Oil Drilling & Production Technology, 2018, 40(S1):44-47.
[9] 刘娟霞, 王昕, 吴昊晟, 等. 凝析气与轻质油的气测识别方法及应用[J]. 特种油气藏, 2017, 24(5):48-53.
[9] Liu J X, Wang X, Wu H S, et al. Identification method for condensate gas and light oil by gas logging and its application[J]. Special Oil & Gas Reservoirs, 2017, 24(5):48-53.
[10] 孙金声, 蒋官澄, 贺垠博, 等. 油基钻井液面临的技术难题与挑战[J]. 中国石油大学学报:自然科学版, 2023, 47(5):76-89.
[10] Sun J S, Jiang G C, He Y B, et al. Technical difficulties and challenges faced by oil-based drilling fluid[J]. Journal of China University of Petroleum:Edition of Natural Science, 2023, 47(5):76-89.
[11] 谢晓军, 熊连桥, 陈莹, 等. 西湖凹陷平湖组低渗储层特征及“甜点” 主控因素分析[J]. 科学技术与工程, 2021, 21(30):12890-12900.
[11] Xie X J, Xiong L Q, Chen Y, et al. Low permeability reservoir characteristics and controlling factors of "sweet points" of Pinghu formation in Xihu Sag[J]. Science Technology and Engineering, 2021, 21(30):12890-12900.
[12] 熊亭, 毛敏, 关利军. 惠州凹陷古近系文昌组、恩平组录井解释方法研究[J]. 海洋地质前沿, 2019, 35(1):67-73.
[12] Xiong T, Mao M, Guan L J. A discussion on well logging interpretation method:A case from Paleogene Wengchang and Enping formations in the Huizhou depression[J]. Marine Geology Frontiers, 2019, 35(1):67-73.
[13] 尚锁贵, 孙新阳, 翁春军. 一种新的气测录井气体比率解释方法[J]. 录井工程, 2005, 16(4):24-26,43,82.
[13] Shang S G, Sun X Y, Weng C J. A new gas ratio method for gas logging interpretation[J]. Mud Logging Engineering, 2005, 16(4):24-26,43,82.
[14] 严伟丽, 高楚桥, 赵彬, 等. 基于气测录井资料的气油比定量计算方法[J]. 科学技术与工程, 2020, 20(23):9287-9292.
[14] Yan W L, Gao C Q, Zhao B, et al. Quantitative calculation method of gas-oil ratio in gas logging data[J]. Science Technology and Engineering, 2020, 20(23):9287-9292.
[15] 郭同政, 张晋言, 柴婧, 等. 基于测录井资料计算页岩含油饱和度与气油比的方法[J]. 石油钻探技术, 2023, 51(3):126-136.
[15] Guo T Z, Zhang J Y, Chai J, et al. Methodology of calculating oil saturation and the GOR of shale based on logging data[J]. Petroleum Drilling Techniques, 2023, 51(3):126-136.
[16] 司马立强, 吴丰, 马建海, 等. 利用测录井资料定量计算复杂油气水系统的气油比——以柴达木盆地英东油气田为例[J]. 天然气工业, 2014, 34(7):34-40.
[16] Sima L Q, Wu F, Ma J H, et al. Quantitative calculation of GOR of a complex oil-gas-water system with logging data:A case study from the Yingdong oil/gas field,Qaidam Basin[J]. Natural Gas Industry, 2014, 34(7):34-40.
[17] 王培慧, 汝黎明, 谢虎. 基于数据相关性和灰色关联的相位识别对比研究[J]. 自动化仪表, 2020, 41(4):56-61,67.
[17] Wang P H, Ru L M, Xie H. Comparative study of phase identification based on data correlation and grey correlation[J]. Process Automation Instrumentation, 2020, 41(4):56-61,67.
[18] 黄超艺, 杨赞锋, 吴荣福, 等. 采用皮尔逊相关性的故障区段定位新方法[J]. 电气技术, 2018, 19(6):56-60,68.
[18] Huang C Y, Yang Z F, Wu R F, et al. The new method of locating fault section with Pearson correlation[J]. Electrical Engineering, 2018, 19(6):56-60,68.
[19] 杨宝善. 凝析气藏开发工程[M]. 北京: 石油工业出版社,1995:247-248.
[19] Yang B S. Condensate gas reservoir development project[M]. Beijing: Petroleum Industry Press,1995:247-248.
[20] 宋昀轩, 王雷, 蔡军, 等. 地化录井技术在油基钻井液环境下储层流体性质识别中的应用[J]. 录井工程, 2021, 32(4):66-72.
doi: 10.3969/j.issn.1672-9803.2021.04.012
[20] Song Y X, Wang L, Cai J, et al. Application of geochemical logging technology to reservoir fluid property identification in oil-based drilling fluid environment[J]. Mud Logging Engineering, 2021, 32(4):66-72.
doi: 10.3969/j.issn.1672-9803.2021.04.012
[21] 张新新, 陈志伟, 王天娇, 等. 连续轻烃分析技术解释储层流体性质的研究与应用[J]. 中国石油勘探, 2022, 27(3):132-142.
[21] Zhang X X, Chen Z W, Wang T J, et al. Research and application of online light hydrocarbon analysis technology for reservoir fluid property interpretation[J]. China Petroleum Exploration, 2022, 27(3):132-142.
doi: 10.3969/j.issn.1672-7703.2022.03.012
[1] 王永刚, 姚宗惠, 杨骐羽, 李景叶, 宋炜. 考虑孔隙形状的碳酸盐岩储层流体综合识别方法研究及应用——以鄂尔多斯盆地奥陶系马家沟组四段为例[J]. 物探与化探, 2025, 49(1): 177-188.
[2] 刘伟男, 管耀, 刘道理, 石磊, 宋伟. 低对比度油层测录井综合识别方法研究与应用——以珠江口盆地陆丰油田为例[J]. 物探与化探, 2024, 48(3): 573-583.
[3] 张婧, 汪勇, 赵慧言, 衡德, 黄君, 张晓丹, 王文文, 贺燕冰. 基于全局自适应MCMC算法的裂缝型储层缝隙流体因子叠前地震反演[J]. 物探与化探, 2024, 48(1): 105-112.
[4] 刘浩杰, 陈雨茂, 王延光, 宗兆云, 吴国忱, 侯庆杰. 粘弹介质叠前四参数同步反演及应用[J]. 物探与化探, 2021, 45(1): 140-148.
[5] 黄福强, 李斌, 张异彪, 胡斌, 冯奇坤. 西湖凹陷斜缆采集关键参数优选研究[J]. 物探与化探, 2020, 44(4): 770-777.
[6] 李英, 秦德海. 基于流体替代的敏感弹性参数优选及流体识别在渤海B油田的应用[J]. 物探与化探, 2018, 42(4): 662-667.
[7] 田瀚, 杨敏. 碳酸盐岩缝洞型储层测井评价方法[J]. 物探与化探, 2015, 39(3): 545-552.
[8] 李红梅. 弹性参数直接反演技术在储层流体识别中的应用[J]. 物探与化探, 2014, 38(5): 970-975.
[9] 黄捍东, 汪佳蓓, 郭飞. 敏感参数分析在叠前反演流体识别中的应用[J]. 物探与化探, 2012, 36(6): 941-946.
[10] 杨童. 基于EI-Fatti弹性波阻抗反演的流体识别[J]. 物探与化探, 2012, 36(3): 360-366.
[11] 张广智, 郑静静, 印兴耀, 张作胜, 武国虎. 基于Curvelet变换的角度流体因子提取技术[J]. 物探与化探, 2011, 35(4): 505-510.
[12] 李国福, 李录明, 李才明. 三维定量交会技术在流体预测中的研究[J]. 物探与化探, 2011, 35(3): 398-401.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com