Please wait a minute...
E-mail Alert Rss
 
物探与化探  2023, Vol. 47 Issue (6): 1400-1409    DOI: 10.11720/wtyht.2023.1611
  地质调查·资源勘查 本期目录 | 过刊浏览 | 高级检索 |
雄安新区深部雾迷山组热储层时频电磁法探测研究
程正璞1,2(), 连晟1(), 魏强1, 胡文广1, 雷鸣1, 李戍1
1.中国地质调查局 水文地质环境地质调查中心,河北 保定 071000
2.中国科学技术大学 地球和空间科学学院,安徽 合肥 230026
Research on time-frequency electromagnetic method detection of Wumishan Formation thermal reservoir in deep Xiong’an New Area
Cheng Zheng-Pu1,2(), Lian Sheng1(), Wei Qiang1, Hu Wen-Guang1, Lei Ming1, Li Shu1
1. Center for Hydrogeology and Environmental Geology, CGS, Baoding 071000,China
2. School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
全文: PDF(2331 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

雄安新区是我国中东部地区地热资源开发利用条件最好的地区之一,蓟县系雾迷山组作为主力热储,顶界面埋深范围变化大,是典型的碳酸盐岩型热储层。本文旨在查明雄安新区起步区6 km以浅的地层结构和隐伏断裂,重点查明深部主力热储层空间分布及结构特征,预测地热有利区。笔者将时频电磁法应用于雄安新区地热资源勘查,通过高标准的数据采集、精细化数据处理和电阻率约束反演,利用拟地震成像技术和钻孔资料进行电阻率层位标定,精细刻画了地层形态结构。本次工作主要查明隐伏断裂8条,主体为NNE走向的正断层,控制了研究区的隆凹格局和地层分布;研究区由西向东划分为容城凸起、中间次凹、牛驼镇凸起及霸州县凹陷;雾迷山组热储层主要分布于牛驼镇凸起、容城凸起及次凹区,顶界面埋深约600~2 600 m;利用本次时频电磁法反演结果,构建了研究区三维地质模型,并从热源、通道、储层、盖层、流体等方面分析认为牛驼镇凸起区为最优的地热有利区,特别是靠近F4下盘附近区域。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
程正璞
连晟
魏强
胡文广
雷鸣
李戍
关键词 时频电磁法雄安新区深部地热雾迷山组热储层地热有利区    
Abstract

Xiong’an New Area is one of the areas with the best conditions for the development and utilization of geothermal resources in sedimentary basins of eastern China. Wumishan Formation of Jixian System is the main thermal reservoir, with buried depth of the top boundary varies greatly, which istypical carbonate type thermal reservoir. In order to find out the stratigraphic structure and concealed faults within 6 km of the starting area of Xiong’an New Area, focus on finding out the spatial distribution and structural characteristics of the main deep thermal reservoirs, and predict the favorable geothermal areas, the time-frequency electromagnetic method is applied to the geothermal resources exploration of Xiong’an New Area. Through high-standard data acquisition, refined data processing and resistivity-constrained inversion, the pseudo-seismic imaging technology and borehole data are used to calibrate the resistivity horizon, which effectively improves the reliability of interpretation results. In this work, 8concealed faults were identified, mainly NNE strike normal faults, which controlled the salient-depression pattern and stratigraphic distribution of the study area. The study area is divided into Rongcheng salient, middle sub-depression, Niutuozhen salient and Baxian depression from west to east. The thermal reservoirs of Wumishan Formation is mainly distributed in Niutuozhen salient, Rongcheng salient and middle sub-depression, with buried depth of top interface is about 600~2600m. Vsing the inversion results of the time-frequency electromagnetic method, the three-dimensional geological model of the study area is constructed, and the Niutuozhen salient area is considered to be the optimal geothermal favorable area from the aspects of heat source, channel, reservoir, caprock and fluid, especially near the footwall of F4.

Key wordstime-frequency electromagnetic method    Xiong’an New Area    deep geothermal exploration    thermal reservoir of wumishan formation    favorable geothermal area abstract
收稿日期: 2022-12-13      修回日期: 2023-02-14      出版日期: 2023-12-20
:  P631  
基金资助:中国地质调查局项目“干热岩资源调查与勘查试采示范”(DD20230018)
通讯作者: 连晟(1985-),男,硕士研究生,高级工程师,研究方向为电磁法数据处理解释、深部地热与水文地球物理技术研究。Email:274649602@qq.com
作者简介: 程正璞(1990-),男,博士生,工程师,研究方向为电磁法数据处理解释、深部地热与油气勘查研究。Email:czp1990@126.com
引用本文:   
程正璞, 连晟, 魏强, 胡文广, 雷鸣, 李戍. 雄安新区深部雾迷山组热储层时频电磁法探测研究[J]. 物探与化探, 2023, 47(6): 1400-1409.
Cheng Zheng-Pu, Lian Sheng, Wei Qiang, Hu Wen-Guang, Lei Ming, Li Shu. Research on time-frequency electromagnetic method detection of Wumishan Formation thermal reservoir in deep Xiong’an New Area. Geophysical and Geochemical Exploration, 2023, 47(6): 1400-1409.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2023.1611      或      https://www.wutanyuhuatan.com/CN/Y2023/V47/I6/1400
方法 探测深度/km 分辨率 抗干扰能力 施工效率 施工成本 适用范围
AMT 2 中浅水热
MT 30 深部热源机制
CSAMT 2 中浅水热
TFEM 10 中深水热或干热
人工地震 5 中深水热或干热
Table 1  多种地球物理勘探方法对比
Fig.1  雄安新区前中生界顶面主要构造分布(据文献[13]修编)
年代
地层
岩性 电阻率/(W·m) 平均密度/
(g·cm-3)
平均磁化率/
10-5SI
属性
范围 平均
新生界 Q 砾石、粗砂、中砂、细砂、
粉砂、粉土、黏土
11~29 17.5 2.00 80 盖层
N 砂岩、粉砂岩 3~17 8 2.10 50 热储
E 红土、黏土、砂岩、泥岩 2~13 5 2.24 32
元古宇 Qb 灰岩 50~5000 >1000 2.72 3.8 盖层
Jx 白云岩、玄武岩、页岩 热储
Ch
太古宇 角闪岩、片麻岩 50~10000 2.61 2000 基底
Table 2  研究区地层物性统计
Fig.2  时频电磁法野外施工示意
Fig.3  时频电磁数据综合处理解释流程
Fig.4  A2-A2'测线电阻率反演剖面(a)、拟地震成像(b)、地质解释剖面(c)
Fig.5  研究区断裂与重力归一化标准偏差叠合
Fig.6  蓟县系雾迷山组顶界面构造
Fig.7  研究区三维地质模型
[1] 常健, 邱楠生, 赵贤正, 等. 渤海湾盆地冀中坳陷现今地热特征[J]. 地球物理学报, 2016, 59(3):1003-1016.
doi: 10.6038/cjg20160322
[1] Chang J, Qiu N S, Zhao X Z, et al. Present-day geothermal regime of the Jizhong depression in Bohai Bay basin,East China[J]. Chinese Journal of Geophysics, 2016, 59(3):1003-1016.
[2] 邱楠生, 许威, 左银辉, 等. 渤海湾盆地中—新生代岩石圈热结构与热—流变学演化[J]. 地学前缘, 2017, 24(3):13-26.
doi: 10.13745/j.esf.2017.03.002
[2] Qiu N S, Xu W, Zuo Y H, et al. Evolution of Meso Cenozoic thermal structure and thermal rheological structure of the lithosphere in the Bohai Bay Basin,eastern North China Craton[J]. Earth Science Frontiers, 2017, 24(3):13-26.
[3] 庞忠和, 孔彦龙, 庞菊梅, 等. 雄安新区地热资源与开发利用研究[J]. 中国科学院院刊, 2017, 32(11):1224-1230.
[3] Pang Z H, Kong Y L, Pang J M, et al. Geothermal resources and development in Xiong’an New Area[J]. Bulletin of Chinese Academy of Sciences, 2017, 32(11):1224-1230.
[4] 柳娟. 冀中坳陷雾迷山组储层特征及综合评价[D]. 北京: 中国石油大学(北京), 2018.
[4] Liu J. Reservoir characteristics and comprehensive evaluation of Wumishan Formation in Jizhong depression[D]. Beijing: China University of Petroleum(Beijing), 2018.
[5] 鲁锴, 鲍志东, 季汉成, 等. 雄安新区蓟县系雾迷山组岩溶热储特征,主控因素及有利区预测[J]. 古地理学报, 2019, 21(6):885-900.
[5] Lu K, Bao Z D, Ji H C, et al. Characteristics main controlling factors and Favorable area a prediction of karstic geothermal reservoirs of the Jixianian Wumishan Formation in Xiong’an New Area[J]. Journal of Palaeogeography, 2019, 21(6):885-900.
[6] 刘明亮, 何曈, 吴启帆, 等. 雄安新区地热水化学特征及其指示意义[J]. 地球科学, 2020, 45(6):2221-2231.
[6] Liu M L, He T, Wu Q F, et al. Hydrogeochemistry of Geothermal Waters from Xiong’an New Area and its indicating significance[J]. Earth Science, 2020, 45(6):2221-2231.
[7] 戴明刚, 马鹏鹏, 雷海子, 等. 雄安新区雾迷山组岩溶热储特征与有利区[J]. 地质科学, 2020, 55(2):487-505.
[7] Dai M G, Ma P P, Lei H Z, et al. Distribution characteristics and favorable targets of karst geothermal reservoir of Wumishan Formation in Xiong’an New Area[J]. Chinese Journal of Geology, 2020, 55(2):487-505.
[8] 胡秋韵, 高俊, 马峰, 等. 雄安新区容城凸起区地热可采资源量动态预测[J]. 地质学报, 2020, 94(7):2013-2025.
[8] Hu Q Y, Gao J, Ma F, et al. Dynamic prediction of geothermal recoverable resources in the Rongcheng uplift area of the Xiong’an New Area[J]. Acta Geologica Sinica, 2020, 94(7):2013-2025.
[9] 马峰, 王贵玲, 张薇, 等. 雄安新区容城地热田热储空间结构及资源潜力[J]. 地质学报, 2020, 94(7):1981-1990.
[9] Ma F, Wang G L, Zhang W, et al. Structure of geothermal reservoirs and resource potential in the Rongcheng geothermal field in Xiong’an New Area[J]. Acta Geologica Sinica, 2020, 94(7):1981-1990.
[10] 王贵玲, 高俊, 张保建, 等. 雄安新区高阳低凸起区雾迷山组热储特征与高产能地热井参数研究[J]. 地质学报, 2020, 94(7):1970-1980.
[10] Wang G L, Gao J, Zhang B J, et al. Study on the thermal storage characteristics of the Wumishan Formation and huge capacity geothermal well parameters in the Gaoyang low uplift area of Xiong’an New Area[J]. Acta Geologica Sinica, 2020, 94(7):1970-1980.
[11] 赵佳怡, 张薇, 马峰, 等. 雄安新区容城地热田地热流体化学特征[J]. 地质学报, 2020, 94(7):1991-2001.
[11] Zhao J Y, Zhang W, Ma F, et al. Geochemical characteristics of the geothermal fluid in the Rongcheng geothermal field,Xiong’an New Area[J]. Acta Geologica Sinica, 2020, 94(7):1991-2001.
[12] 吴爱民, 马峰, 王贵玲, 等. 雄安新区深部岩溶热储探测与高产能地热井参数研究[J]. 地球学报, 2018, 39(5):523-532.
[12] Wu A M, Ma F, Wang G L, et al. A study of deep-seated karst geothermal reservoir exploration and huge capacity geothermal well parameters in Xiong’an New Area[J]. Acta Geoscientica Sinica, 2018, 39(5):523-532.
[13] 戴明刚, 汪新伟, 刘金侠, 等. 雄安新区起步区及周边地热资源特征与影响因素[J]. 地质科学, 2019, 54(1):176-191.
[13] Dai M G, Wang X W, Liu J X, et al. Characteristics and influence factors of geothermal resources in the starting and adjacent zone of Xiong’an New Area[J]. Chinese Journal of Geology, 2019, 54(1):176-191.
[14] 雷海飞, 李红岩, 戴明刚, 等. 雄安新区地温场特征及其控制因素[J]. 中国煤炭地质, 2020, 32(2):46-50.
[14] Lei H F, Li H Y, Dai M G, et al. Geothermal field features and their control factors in Xiong’an New Area[J]. Coal Geology of China, 2020, 32(2):46-50.
[15] 陈墨香, 汪集旸, 汪缉安, 等. 华北断陷盆地热场特征及其形成机制[J]. 地质学报, 1990, 64(1):80-91.
[15] Chen M X, Wang J Y, Wang J A, et al. The characteristics of the geothermal field and its formation mechanism in the north china down-faulted basin[J]. Acta Geological Sinica, 1990, 64(1):80-91.
[16] 李卫卫, 饶松, 唐晓音, 等. 河北雄县地热田钻井地温测量及地温场特征[J]. 地质科学, 2014, 49(3):850-863.
[16] Li W W, Rao S, Tang X Y, et al. Borehole temperature logging and temperature field in the Xiongxian geothermal field,Hebei Province[J]. Chinese Journal of Geology, 2014, 49(3):850-863.
[17] 胡斌, 赵亮, 雷海飞, 等. 雄安新区雾迷山组地热储层分布特征[J]. 地球科学前沿, 2021, 11(5):584-589.
[17] Hu B, Zhao L, Lei H F, et al. Distribution characteristics of geothermal reservoirs in Wumishan Formation,Xiong’an New Area[J]. Advances in Geosciences, 2021, 11(5):584-589.
doi: 10.12677/AG.2021.115053
[18] 李弘, 俞建宝, 吕慧, 等. 雄县地热田重磁响应及控热构造特征研究[J]. 物探与化探, 2017, 41(2):242-248.
[18] Li H, Yu J B, Lyu H, et al. Gravity and aeromagnetic responses and heat-controlling structures of Xiongxian geothermal area[J]. Geophysical and Geochemical Exploration, 2017, 41(2):242-248.
[19] 于长春, 乔日新, 张迪硕. 雄安新区航磁推断的三维基底构造特征[J]. 物探与化探, 2017, 41(3):385-391.
[19] Yu C C, Qiao R X, Zhang D S. The basement tectonic characteristics from interpretation of aeromagnetic data in Xiong’an region[J]. Geophysical and Geochemical Exploration, 2017, 41(3):385-391.
[20] 何登发, 单帅强, 张煜颖, 等. 雄安新区的三维地质结构:来自反射地震资料的约束[J]. 中国科学:地球科学, 2018, 48(9):1207-1222.
[20] He D F, Shan S Q, Zhang Y Y, et al. 3-D geologic architecture of Xiong’an New Area: Constraints from seismic reflection data[J]. Scientia Sinica:Terrae, 2018, 48(9):1207-1222.
doi: 10.1360/N072017-00345
[21] 商世杰, 丰成君, 谭成轩, 等. 雄安新区附近主要隐伏断裂第四纪活动性研究[J]. 地球学报, 2019, 40(6):836-846.
[21] Shang S J, Feng C J, Tan C X, et al. Quaternary activity study of major buried faults near Xiong’an New Area[J]. Acta Geoscientica Sinica, 2019, 40(6):836-846.
[22] 张龙飞, 赵石峰, 张昭. 雄安新区地球物理特征及方法讨论[J]. 中国科技信息, 2020(21):68-69.
[22] Zhang L F, Zhao S F, Zhang Z. Discussion on geophysical characteristics and methods in Xiong'an New Area[J]. China Science and Technology Information, 2020(21):68-69.
[23] 王凯, 张杰, 白大为, 等. 雄安新区地热地质模型探究:来自地球物理的证据[J]. 中国地质, 2021, 48(5):1453-1468.
[23] Wang K, Zhang J, Bai D W, et al. Geothermal-geological model of Xiong’an New Area:Evidence from geophysics[J]. Geology in China, 2021, 48(5):1453-1468.
[24] 龙慧, 谢兴隆, 李凤哲, 等. 二维地震和高密度电阻率测深揭示雄安新区浅部三维地质结构特征[J]. 物探与化探, 2022, 46(4):808-815.
[24] Long H, Xie X L, Li F Z, et al. 2D seismic and high-density resistivity sounding reveal the shallow three-dimensional geological structure characteristics of Xiong’an New Area[J]. Geophysical and Geochemical Exploration, 2022, 46(4):808-815.
[25] 岳航羽, 王凯, 张杰, 等. 雄安新区及周边深反射地震高精度成像技术[J]. 石油地球物理勘探, 2022, 57(4):855-869,793-740.
[25] Yue H Y, Wang K, Zhang J, et al. High-precision imaging technology of deep reflection seismic in Xiong’an New Area and its surroundings areas[J]. Oil Geophysical Prospecting, 2022, 57(4):855-869,793-740.
[26] 王朱亭, 张超, 姜光政, 等. 雄安新区现今地温场特征及成因机制[J]. 地球物理学报, 2019, 62(11):4313-4322.
doi: 10.6038/cjg2019M0326
[26] Wang Z T, Zhang C, Jiang G Z, et al. Present-day geothermal field of Xiong’an New Area and its heat source mechanism[J]. Chinese Journal of Geophysics, 2019, 62(11):4313-4322.
[27] 徐杰, 高战武, 宋长青, 等. 太行山山前断裂带的构造特征[J]. 地震地质, 2000, 22(2):111-122.
[27] Xu J, Gao Z W, Song C Q, et al. The structural characters of the piedmont fault zone of Taihang mountain[J]. Seismology and Geology, 2000, 22(2):111-122.
[28] 杨明慧, 刘池阳, 杨斌谊, 等. 冀中坳陷古近纪的伸展构造[J]. 地质论评, 2002, 48(1):58-67.
[28] Yang M H, Liu C Y, Yang B Y, et al. Extensional structures of the Paleogene in the central Hebei Basin,China[J]. Geological Review, 2002, 48(1):58-67.
[29] 范玉璐, 谭成轩, 张鹏, 等. 雄安新区现今地应力环境及其对构造稳定性影响研究[J]. 地球学报, 2020, 41(4):481-491.
[29] Fan Y L, Tan C X, Zhang P, et al. A study of current in-situ stress state and its influence on tectonic stability in the Xiong’an New Area[J]. Acta Geoscientica Sinica, 2020, 41(4):481-491.
[30] 郝爱兵, 吴爱民, 马震, 等. 雄安新区地上地下工程建设适宜性一体化评价[J]. 地球学报, 2018, 39(5):513-522.
[30] Hao A B, Wu A M, Ma Z, et al. A study of engineering construction suitability integrated evaluation of surface-underground space in Xiong’an New Area[J]. Acta Geoscientica Sinica, 2018, 39(5):513-522.
[31] 张竞, 马震, 吴爱民, 等. 基于岩性光谱特征的雄安新区地面古河道识别研究[J]. 地球学报, 2018, 39(5):542-548.
[31] Zhang J, Ma Z, Wu A M, et al. A study of paleochannels interpretation by the spectrum of Lithology in Xiong’an New Area[J]. Acta Geoscientica Sinica, 2018, 39(5):542-548.
[32] 马震, 夏雨波, 王小丹, 等. 雄安新区工程地质勘查数据集成与三维地质结构模型构建[J]. 中国地质, 2019, 46(S2):123-129.
[32] Ma Z, Xia Y B, Wang X D, et al. Integration of engineering geological investigation data and construction of a 3D geological structure model in the Xiong’an New Area[J]. Geology in China, 2019, 46(S2):123-129.
[33] Dong W B, Zhao X M, Liu F, et al. The time frequency electromagnetic method and its application in western China[J]. Applied Geophysics, 2008, 5(2):127-135.
doi: 10.1007/s11770-008-0020-8
[34] He Z X, Suo X D, Hu Z Z, et al. Time-frequency electromagnetic method for exploring favorable deep igneous rock targets:A case study from north Xinjiang[J]. Journal of Environmental and Engineering Geophysics, 2019, 24(2):215-224.
doi: 10.2113/JEEG24.2.215
[35] 何展翔, 陈忠昌, 任文静, 等. 时频电磁(TFEM)勘探技术:数据采集系统[J]. 石油地球物理勘探, 2020, 55(5):1131-1138,937.
[35] He Z X, Chen Z C, Ren W J, et al. Time-frequency electromagnetic(TFEM) method: Data acquisition system and its application[J]. Oil Geophysical Prospecting, 2020, 55(5):1131-1138,937.
[36] 穆群英, 魏启, 庞恒昌, 等. TFEM组网式时频电磁采集系统组成及功能[J]. 物探装备, 2017, 27(1):67-70.
[36] Mu Q Y, Wei Q, Pang H C, et al. System composition and functions of the TFEM network time frequency electromagnetic acquisition system[J]. Equipment for Geophysical Prospecting, 2017, 27(1):67-70.
[37] 石卓, 张辉, 段涛, 等. 基于时频电磁法的冀中坳陷油气藏勘探调查[J]. 世界地质, 2018, 37(2):585-594.
[37] Shi Z, Zhang H, Duan T, et al. Investigation of oil and gas reservoir in Jizhong depression based on time-frequency electromagnetic method[J]. Global Geology, 2018, 37(2):585-594.
[38] 张春贺, 刘雪军, 何兰芳, 等. 基于时频电磁法的富有机质页岩层系勘探研究[J]. 地球物理学报, 2013, 56(9):3173-3183.
[38] Zhang C H, Liu X J, He L F, et al. A study of exploration organic rich shales using time-frequency electromagnetic method (TFEM)[J]. Chinese Journal of Geophysics, 2013, 56(9):3173-3183.
[39] 何展翔, 董卫斌, 赵国, 等. 时频电磁(TFEM)技术:数据处理[J]. 石油地球物理勘探, 2021, 56(6):1391-1399,1202-1203.
[39] He Z X, Dong W B, Zhao G, et al. Time-frequency electromagnetic (TFEM) technology: Data processing[J]. Oil Geophysical Prospecting, 2021, 56(6):1391-1399,1202-1203.
[40] Cooper G R J, Cowan D R. Edge enhancement of potential-field data using normalized statistics[J]. Geophysics, 2008, 73(3): H1-H4.
[41] 郭飒飒, 朱传庆, 邱楠生, 等. 雄安新区深部地热资源形成条件与有利区预测[J]. 地质学报, 2020, 94(7):2026-2035.
[41] Guo S S, Zhu C Q, Qiu N S, et al. Formation conditions and favorable areas for the deep geothermal resources in Xiong’an New Area[J]. Acta Geologica Sinica, 2020, 94(7):2026-2035.
[1] 张昭, 殷全增, 张龙飞, 张大明, 张世晖, 黄国疏, 赵石峰, 杨彪, 台立勋, 张灯亮, 王进朝, 段刚. 综合物探技术在深部碳酸盐岩热储探测中的应用研究——以雄安新区为例[J]. 物探与化探, 2023, 47(4): 926-935.
[2] 单希鹏, 谢汝宽, 余学中, 梁盛军, 李健. 频率域航空电磁法在雄安新区浅层(微)咸淡水调查中的应用[J]. 物探与化探, 2023, 47(2): 504-511.
[3] 苏永军, 曹占宁, 赵更新, 胡祥云, 范剑, 张竞, 范翠松, 黄忠峰. 高密度电阻率法在雄安新区浅表古河道精细化探测中的应用研究[J]. 物探与化探, 2023, 47(1): 272-278.
[4] 龙慧, 谢兴隆, 李凤哲, 任政委, 王春辉, 郭淑君. 二维地震和高密度电阻率测深揭示雄安新区浅部三维地质结构特征[J]. 物探与化探, 2022, 46(4): 808-815.
[5] 单希鹏, 谢汝宽, 梁盛军, 余学中. 直升机TEM测量影响因素分析[J]. 物探与化探, 2021, 45(1): 178-185.
[6] 王永涛, 杨战军, 王学慧, 石艳玲, 贠智能. 时频电磁多属性图像融合预测油气技术及应用[J]. 物探与化探, 2020, 44(5): 1221-1225.
[7] 于长春, 乔日新, 张迪硕. 雄安新区航磁推断的三维基底构造特征[J]. 物探与化探, 2017, 41(3): 385-391.
[8] 周印明, 刘雪军, 张春贺, 朱永山. 快速识别页岩气“甜点”目标的时频电磁勘探技术及应用[J]. 物探与化探, 2015, 39(1): 60-63,83.
[9] 黄力军, 陆桂福, 刘瑞德, 杨冠鼎. 电磁测深方法在深部地热资源调查中的应用[J]. 物探与化探, 2004, 28(6): 493-495.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com