Please wait a minute...
E-mail Alert Rss
 
物探与化探  2023, Vol. 47 Issue (5): 1147-1156    DOI: 10.11720/wtyht.2023.1449
  地质调查·资源勘查 本期目录 | 过刊浏览 | 高级检索 |
汝城盆地深部构造及地热资源赋存潜力——基于重力与AMT探测的认识
赵宝峰1,2,3(), 汪启年1,2,3, 郭信1,2,3, 官大维1,2,3, 陈同刚1,2,3, 方雯1,2,3
1.安徽省勘查技术院,安徽 合肥 230031
2.安徽省电法勘探重点实验室,安徽 合肥 230031
3.自然资源部 覆盖区深部资源勘查工程技术创新中心,安徽 合肥 230001
Gravity survey and audio magnetotellurics-based insights into the deep structures and geothermal resource potential of the Rucheng Basin
ZHAO Bao-Feng1,2,3(), WANG Qi-Nian1,2,3, GUO Xin1,2,3, GUAN Da-Wei1,2,3, CHEN Tong-Gang1,2,3, FANG Wen1,2,3
1. Geological Exploration Technology Institute of Anhui Province, Hefei 230031, China
2. Anhui Provincial Key Laboratory of Electrical Prospecting, Hefei 230031, China
3. Technology Innovation Center of Coverage Area Deep Resource Exploration Engineering, MNR, Hefei 230001, China
全文: PDF(8018 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

地热是重要的清洁能源和旅游矿产,汝城盆地是湘东南山区内的碳酸盐岩盆地,具有形成对流型地热的有利条件,由于盆地三面受诸广山巨型岩体夹持,基底遭受岩体侵入破坏,地层变形严重,断裂纵横,东西构造差异显著,导热、导水通道与深部热储构造发育不清,制约了对该盆地地热赋存潜力的认识。针对以上问题,利用重力与AMT对盆地深部构造进行了探测,取得以下认识:①汝城盆地东西分异呈双向对冲的结构,东部复向斜受燕山期岩体围绕侵位发生挤压和顺时针旋转,核心区岩石破碎,边界走滑断裂岩石破碎带发育,断裂垂向切割深度超过4 km,宽度300~600 m,倾角80°~90°。②盆地内沿基底背斜轴部NWW向发育有多个隐覆岩体,直径3~4 km,埋深0.5~1.5 km,温泉产出在过隐伏岩体边界的断裂破碎带中。③盆地内具有形成对流型地热的良好条件,褶皱、断裂带和隐覆岩体等相互匹配形成统一的控热要素空间组合关系,构成东西双向补给、中间排泄的聚热特征,东部深部热储更发育,盆地地热资源潜力大。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵宝峰
汪启年
郭信
官大维
陈同刚
方雯
关键词 汝城盆地深部结构地热资源重力与AMT    
Abstract

Geothermal resources are significant clean energy and tourism mineral resources. The Rucheng Basin, a carbonate basin in the southeastern mountainous area of Hunan Province, possesses favorable conditions for the formation of convective geothermal energy. However, the basin is enclosed on three sides by the giant Zhuguangshan rock mass, and its basement is subjected to the intrusion and destruction by the rock mass, resulting in severely deformed formations, crisscrossing faults, and significantly different eastern and western structures. The understanding of the basin's water- and heat-conducting pathways and deep reservoir structures remains elusive, thus restricting the investigation of the basin's geothermal potential. Hence, this study probed the basin's deep structures through gravity survey and audio magnetotellurics (AMT), obtaining the following insights: (1) The Rucheng Basin has developed into a bidirectional ramp structure due to east-west differentiation. The synclinorium in the east experienced compression and clockwise rotation due to the emplacement of the Yanshanian rock mass, rocks were fragmented in the core zone, and strike-slip fracture zones were found at the boundary. The faults have vertical cutting depths exceeding 4 km, widths ranging from 300~600 m, and dip angles between 80°~90°. (2) The basin's basement anticlinal axis hosts several NWW-directed concealed rock masses, with diameters from 3~4 km and buried depths from 0.5~1.5 km. Hot springs reside in the fracture zones crossing the boundaries of the concealed rock masses. (3) The basin boasts favorable conditions for the formation of convective geothermal energy. Folds, fault zones, and concealed rock masses match each other to form a unified spatial combination of heat-controlling elements, manifesting heat accumulation characterized by east-west recharge and intermediate discharge. With more thriving deep geothermal reservoirs in the east, the basin has high potential for geothermal resources.

Key wordsRucheng Basin    deep structure    geothermal resource    gravity survey and AMT
收稿日期: 2022-09-15      修回日期: 2023-02-21      出版日期: 2023-10-20
ZTFLH:  P631  
基金资助:国家重点研发计划项目课题(2018YFC0603606);安徽省重点研究与开发计划(2020n07020003)
作者简介: 赵宝峰(1984-),男,2014年毕业于中国地质大学(武汉),获工学博士学位,高级工程师,主要从事地热资源勘查工作。Email:zhaobaofengxo@163.com
引用本文:   
赵宝峰, 汪启年, 郭信, 官大维, 陈同刚, 方雯. 汝城盆地深部构造及地热资源赋存潜力——基于重力与AMT探测的认识[J]. 物探与化探, 2023, 47(5): 1147-1156.
ZHAO Bao-Feng, WANG Qi-Nian, GUO Xin, GUAN Da-Wei, CHEN Tong-Gang, FANG Wen. Gravity survey and audio magnetotellurics-based insights into the deep structures and geothermal resource potential of the Rucheng Basin. Geophysical and Geochemical Exploration, 2023, 47(5): 1147-1156.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2023.1449      或      https://www.wutanyuhuatan.com/CN/Y2023/V47/I5/1147
Fig.1  工区地质
代号 地层岩性 密度/
(g·cm-3)
电阻率/
(Ω·m)
J 侏罗系粉砂质泥岩、
长石石英砂岩
2.18~2.65 150~320
P2 上二叠统石英砂岩、
粉砂岩、页岩
2.52~2.74 180~1700
C2- P1 中石炭统—下二叠统粗晶云
岩、泥晶灰岩、泥质灰岩
2.70~2.74 900~15000
C1-D3s 下石炭统—上泥盆统泥晶
灰岩、泥灰岩、粉砂岩
2.71~2.76 400~9600
D2- D3s 中泥盆统—上泥盆统泥晶
灰岩、云质灰岩,底部石
英砂岩
2.72~2.82 900~15000
-Pt3 寒武系—新远古界,浅变质
长石石英砂岩,石英砂
岩,硅质岩
2.71~2.88 2800~12000
αβb 晚侏罗世安山玄武岩 2.62~2.68 300~1100
ηυ 二长辉长岩 2.70~3.20 1000~10000
ηγ 二长花岗岩 2.56~2.58 4900~13000
其他 含裂隙岩石 20~180
Table 1  汝城盆地岩石物性
Fig.2  重力异常及解释
a—布格重力;b—匹配滤波视深度0~2 000 m;c—匹配滤波视深度2 000~4 000 m;d—匹配滤波视深度>4 000 m
Fig.3  AMT二维反演电阻率剖面及地质解释
a—L140测线及地质解释; b—L120测线及地质解释; c—L104测线及地质解释
Fig.4  工区地形及水源补给方向
Fig.5  汝城盆地深部结构及地热赋存特点
Fig.6  汝城盆地控热要素空间耦合关系示意
[1] 汪集暘, 庞忠和, 孔彦龙, 等. 我国地热清洁取暖产业现状与展望[J]. 科技促进发展, 2020, 16(3):294-298.
[1] Wang J Y, Pang Z H, Kong Y L, et al. Status and prospects of geothermal clean heating industry in China[J]. Science and Technology for Development, 2020, 16(3):294-298.
[2] 王贵玲, 蔺文静. 我国主要水热型地热系统形成机制与成因模式[J]. 地质学报, 2020, 94(7):1923-1937.
[2] Wang G L, Lin W J. Main hydro-geothermal systems and their genetic models in China[J]. ACTA Geologica Sinica, 2020, 94(7):1923-1937.
[3] 汪集旸. 中低温对流型地热系统[J]. 地学前缘, 1996, 3(3-4):96-100.
[3] Wang J Y. Low-medium temperature geothermal system of convective type[J]. Earth Science Frontiers, 1996, 3(3-4):96-100.
[4] 史猛, 康凤新, 张杰, 等. 胶东半岛中低温对流型地热资源赋存机理及找热模型[J]. 地质论评, 2019, 65(5):1276-1287.
[4] Shi M, Kang F X, Zhang J, et al. Occurrence mechanism and geothermal exploration model of low-medium temperature geothermal systems of convective type in Jiaodong Peninsula[J]. Geological Review, 2019, 65(5):1276-1287.
[5] 刘元晴, 周乐, 吕琳, 等. 山东鲁中山区地热地质特征及热水成因[J]. 地质通报, 2020, 39(12):1908-1918.
[5] Liu Y Q, Zhou L, Lyu L, et al. Geothermal geological characteristics and Genesis of hot water in the central mountain area of Shandong Province[J]. Geological Bulletin of China, 2020, 39(12):1908-1918.
[6] 李超文, 彭头平. 湖南地热资源分布及远景区划[J]. 湖南地质, 2001, 20(4):272-276.
[6] Li C W, Peng T P. Resources distribution of ground warm-mater in Hunan province and its prospective[J]. Hunan Geology, 2001, 20(4):272-276.
[7] 柏道远, 汪永清, 王先辉, 等. 湘东南汝城盆地性质及其对华南燕山早期构造环境的启示[J]. 沉积与特提斯地质, 2006, 26(1):47-53.
[7] Bai D Y, Wang Y Q, Wang X H, et al. The nature of the rucheng basin in southeastern Hunan and its significance to the tectonic setting of South China during the early yanshanian[J]. Sedimentary Geology and Tethyan Geology, 2006, 26(1):47-53.
[8] 李建威, 李先福, 李紫金, 等. 走滑变形过程中的流体包裹体研究——以湘东地区为例[J]. 大地构造与成矿学, 1999, 23(3):240-247.
[8] Li J W, Li X F, Li Z J, et al. Fluid inclusions study in the process of strike slip faulting:A case study in eastern Hunan Province[J]. Geotectonicaet Metallogenia, 1999, 23(3):240-247.
[9] 舒良树, 邓平, 王彬, 等. 南雄—诸广地区晚中生代盆山演化的岩石化学、运动学与年代学制约[J]. 中国科学:地球科学, 2004, 34(1):1-13.
[9] Shu L S, Deng P, Wang B, et al. Late mesozoic basin-range evolution of Nanxiong Zhuguang area:Constraint from petrochemistry,kinematics and geochronology[J]. Science China:Earth Sciences, 2004, 34(1):1-13.
[10] 曾昭发, 陈雄, 李静, 等. 地热地球物理勘探新进展[J]. 地球物理学进展, 2012, 27(1):168-178.
[10] Zeng Z F, Chen X, Li J, et al. Advancement of geothermal geophysics exploration[J]. Progress in Geophysics, 2012, 27(1):168-178.
[11] 陈长敬, 刘圣博, 黄理善. 音频大地电磁测深(AMT)约束下的重力三维反演应用研究——以越城岭岩体北缘隐伏岩体为例[J]. 地球物理学进展, 2019, 34(4):1391-1397.
[11] Chen C J, Liu S B, Huang L S. 3D inversion of gravity under audio frequency magnetotelluric method ( AMT) constraint:A case study of the concealed rock mass in the northern margin of Yuechengling rock mass[J]. Progress in Geophysics, 2019, 34(4):1391-1397.
[12] 严小丽, 康慧敏, 王光杰, 等. AMT方法在鳌山卫花岗岩地区深部地热构造勘探中的应用[J]. 地球物理学进展, 2019, 34(5):1945-1953.
[12] Yan X L, Kang H M, Wang G J, et al. Application of AMT in deep geothermal structure exploration in Aoshanwei granite area of Qingdao[J]. Progress in Geophysics, 2019, 34(5):1945-1953.
[13] 吾守艾力·肉孜, 梁生贤, 邹光富, 等. AMT与重力方法在云南芦子园地区隐伏岩体勘查中的应用[J]. 物探与化探, 2015, 39(3):525-529.
[13] Wu S A L, Liang S X, Zou G F, et al. The application of AMT and 3D gravity methods to the prospecting for concealed rock body in the Luziyuan area[J]. Geophysical and Geochemical Exploration, 2015, 39(3):525-529.
[14] 刘圣博, 罗士新, 刘磊, 等. 重磁综合推断中南地区隐伏的中酸性岩体[J]. 工程地球物理学报, 2013, 10(6):805-813.
[14] Liu S B, Luo S X, Liu L, et al. Deduced the distribution of the concealed acidic-intermediate rock with gravity and magnetic exploration in the South-central area[J]. Chinese Journal of Engineering Grophysics, 2013, 10(6):805-813.
[15] 郭信, 兰学毅, 严加永, 等. 大比例尺重力调查与成矿预测:以江西朱溪钨矿外围为例[J]. 地质与勘探, 2020, 56(5):985-1004.
[15] Guo X, Lan X Y, Yan J Y, et al. Larg-scale gravity survey and metallogenic prediction:An example of the Zhuxi Tungsten deposit in Jiangxi Province[J]. Geology and Exploration, 2020, 56(5):985-1004.
[16] 伍皓, 夏彧, 周恳恳, 等. 高分异花岗岩浆可能是华南花岗岩型铀矿床主要铀源——来自诸广山南体花岗岩锆石铀含量的证据[J]. 岩石学报, 2020, 36(2):589-600.
[16] Wu H, Xia Y, Zhou K K, et al. Highly fractionated granite magmas maybe the main Uranium source of granite-type Uranium deposits in South China:Evidence from the Uranium content of zircon in southern Zhuguangshan granitic composite[J]. Acta Petrologica Sinica, 2020, 36(2):589-600.
doi: 10.18654/1000-0569/2020.02.16
[1] 薛东旭, 刘诚, 郭发, 王俊, 徐多勋, 杨生飞, 张沛. 基于土壤氡气测量和可控源音频大地电磁的陕西眉县汤峪地热预测[J]. 物探与化探, 2023, 47(5): 1169-1178.
[2] 宫明旭, 白利舸, 曾昭发, 吴丰收. 基于机器学习松辽盆地大地热流计算与特征分析[J]. 物探与化探, 2023, 47(3): 766-774.
[3] 王军成, 赵振国, 高士银, 罗传根, 李琳, 徐明钻, 李勇, 袁国境. 综合物探方法在滨海县月亮湾地热资源勘查中的应用[J]. 物探与化探, 2023, 47(2): 321-330.
[4] 曾何胜, 徐元璋, 刘磊, 唐宝山, 张祎然, 李义, 陈宇峰. 广域电磁法在复杂电磁干扰环境的应用研究——以某市周边地热勘查为例[J]. 物探与化探, 2020, 44(5): 1031-1038.
[5] 李麒麟, 李荣亮, 苏海伦, 刘洋, 曹自才. 甘肃临泽县城区深部地热资源调查评价[J]. 物探与化探, 2020, 44(5): 999-1008.
[6] 陈晓晶, 虎新军, 李宁生, 安百州, 白亚东. 银川平原基于地球物理资料三维建模的深部地质构造研究[J]. 物探与化探, 2020, 44(2): 245-253.
[7] 王晓东, 李祥新, 宫进忠, 史玲玲. 京津冀基岩区地热资源远景的地球化学区划[J]. 物探与化探, 2019, 43(6): 1246-1253.
[8] 杨兴沐, 黄卓雄, 葛为中, 梁炳和, 高建东. 遥控电极阵列拓展高密度电阻率法勘探深度研究[J]. 物探与化探, 2016, 40(1): 73-77.
[9] 常志勇, 史杰, 李清海, 赵海斌, 周晓燕. 土壤氡测量技术在新疆塔什库尔干县地热资源勘查中的应用[J]. 物探与化探, 2014, 38(4): 654-659.
[10] 郭守鋆, 李百祥, 周小波, 何长英, 李威, 张树恒, 李振萍. 电法在甘子河断裂对流型地热资源勘查中的应用[J]. 物探与化探, 2013, 37(2): 229-232.
[11] 邓国泉, 程云涛. CSAMT在福建贵安地热勘查中的应用[J]. 物探与化探, 2011, 35(6): 751-753,757.
[12] 高景宏, 佟铁钢, 强建科, 李永兴. 开封凹陷区地热资源大地电磁测深研究[J]. 物探与化探, 2010, 34(4): 440-443.
[13] 赵建粮, 陈天振, 张晋, 邓晓颖, 蔡琨. MT法在开封凹陷地热资源调查中的应用[J]. 物探与化探, 2010, 34(2): 163-166.
[14] 黄力军, 陆桂福, 刘瑞德, 杨冠鼎. 电磁测深方法在深部地热资源调查中的应用[J]. 物探与化探, 2004, 28(6): 493-495.
[15] 张季生, 吴功建. 世界直接利用地热资源的现状[J]. 物探与化探, 2001, 25(2): 90-94,101.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com