Please wait a minute...
E-mail Alert Rss
 
物探与化探  2022, Vol. 46 Issue (4): 824-829    DOI: 10.11720/wtyht.2022.1505
  地质调查·资源勘查 本期目录 | 过刊浏览 | 高级检索 |
南方碳酸盐岩地区页岩气钻探井位选址中的综合物探方法应用
罗卫锋1(), 胡志方1(), 甘伏平2, 张庆玉2, 康海霞1, 张云枭1
1.中国地质调查局 油气资源调查中心,北京 100083
2.中国地质科学院 岩溶地质研究所,广西 桂林 541004
Application of comprehensive geophysical prospecting method in well siting for shale gas exploration in carbonate areas in east China
LUO Wei-Feng1(), HU Zhi-Fang1(), GAN Fu-Ping2, ZHANG Qing-Yu2, KANG Hai-Xia1, ZHANG Yun-Xiao1
1. Oil & Gas Survey Center, China Geological Survey, Beijing 100083, China
2. Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin 541004, China
全文: PDF(1739 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

南方碳酸盐岩地区页岩气钻探工程面临的碳酸盐岩岩溶问题突出,因此,钻前开展近地表地球物理勘查,合理选择井位是十分必要的。以广西柳州市融安县桂融页1井井位选址为例,综合选择高密度电阻率法、音频大地电磁法及氡气测量3种方法,开展钻前井位选址研究工作,取得良好效果。桂融页1井在近地表没有钻遇断层破碎带,与综合物探解释成果基本吻合,表明综合物探方法在南方碳酸盐岩地区页岩气勘探井位选址勘查方面是有效的。本次成果为今后类似地区钻前井位选址提供了借鉴和参考。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
罗卫锋
胡志方
甘伏平
张庆玉
康海霞
张云枭
关键词 碳酸盐岩地区页岩气钻探井位选址岩溶综合物探方法    
Abstract

The drilling engineering for shale gas in carbonate areas in China is facing prominent carbonate karst. It is necessary to carry out near-surface geophysical prospecting before drilling and reasonably select the well locations in order to ensure the safety of the well site and reduce the drilling engineering risks. Taking the siting of Well Guirongye-1 in Rong'an County, Liuzhou City, Guangxi Province as an example, this study conducted the application research of well siting before drilling comprehensively using three geophysical prospecting methods, namely the high-density resistivity method, the audio-frequency magnetotellurics method, and radon survey, achieving satisfactory results. Well Guirongye-1 did not encounter a fault fracture zone near the surface, which is basically consistent with the interpretation results of comprehensive geophysical prospecting. This result indicates that the comprehensive geophysical prospecting method is feasible and effective in the siting of shale gas exploration wells in the carbonate areas in south China. This study will provide a certain reference for the well siting before drilling in similar areas in the future.

Key wordscarbonate area    drilling for shale gas    well location selection    karst    comprehensive geophysical prospecting method
收稿日期: 2021-09-08      修回日期: 2022-01-05      出版日期: 2022-08-20
ZTFLH:  P631  
基金资助:中国地质调查局地质调查项目“渝黔—滇桂地区页岩气战略选区调查”(DD20190108)
通讯作者: 胡志方
作者简介: 罗卫锋(1973-),男,高级工程师,主要从事非地震资料处理解释及方法研究工作。Email: luoweifeng_08@163.com
引用本文:   
罗卫锋, 胡志方, 甘伏平, 张庆玉, 康海霞, 张云枭. 南方碳酸盐岩地区页岩气钻探井位选址中的综合物探方法应用[J]. 物探与化探, 2022, 46(4): 824-829.
LUO Wei-Feng, HU Zhi-Fang, GAN Fu-Ping, ZHANG Qing-Yu, KANG Hai-Xia, ZHANG Yun-Xiao. Application of comprehensive geophysical prospecting method in well siting for shale gas exploration in carbonate areas in east China. Geophysical and Geochemical Exploration, 2022, 46(4): 824-829.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2022.1505      或      https://www.wutanyuhuatan.com/CN/Y2022/V46/I4/824
Fig.1  桂中坳陷构造区划
地层 符号 岩性特征 电阻率/(Ω·m)
第四系 Q 黏土 1~100
上石炭统 C2 灰岩、白云岩 939~11692
下石炭统 C1 泥质灰岩、泥页岩 246~1370
上泥盆统 D3 硅质岩、扁豆状灰岩 366~6441
中—下泥盆统 D2-D1 泥灰岩、泥质页岩 49~4925
Table 1  研究区岩石物性统计
Fig.2  测线布设
Fig.3  综合物探成果
[1] 章术, 尹亮先, 首照兵. 贵州铜仁地区页岩气钻井施工难点及对策[J]. 探矿工程, 2017, 44(5):10-13.
[1] Zhang S, Yin L X, Shou Z B. Difficulties of Shale Gas Well Drilling Construction in Tonggren of Guizhou and the Countermeasures[J]. Exploration Engineering, 2017, 44(5): 10-13.
[2] 周晓庆, 薛强, 罗杰. 四川盆地天然气钻前工程选址风险识别与防控措施[J]. 天然气工业, 2012, 32(8):105-107,136.
[2] Zhou X Q, Xue Q, Luo J. Risk identification and prevention measures for pre-drilling site selection in the Sichuan Basin[J]. Natural Gas Industry, 2012, 32(8): 105-107,136.
[3] 王佳龙, 邸兵叶, 张宝松, 等. 音频大地电磁法在地热勘查中的应用——以福建省宁化县黄泥桥地区为例[J]. 物探与化探, 2021, 45(3):576-582.
[3] Wang J L, Di B Y, Zhang B S, et al. The application of audio frequency magnetotelluric method to the geothermal exploration: A case study of Huangniqiao area, Ninghua County, Fujian Province[J]. Geophysical and Geochemical Exploration, 2021, 45(3): 576-582.
[4] 赵广学, 阮帅, 吴肃元. 隧道勘探AMT 数据二维非线性共轭梯度反演的关键参数探讨[J]. 物探与化探, 2021, 45(2):480-489.
[4] Zhao G X, Ruan S, Wu S Y. Researches on the selection of key parameters in AMT 2D nonlinear conjugate inversion for railway tunnel exploration[J]. Geophysical and Geochemical Exploration, 2021, 45(2): 480-489.
[5] 杨剑, 李华, 王桥, 等. 综合地球物理勘探快速获取城市待建区浅部三维地质特征:以成都市天府新区独角兽岛为例[J]. 地球物理学进展, 2021, 36(4):1751-1759.
[5] Yang J, Li H, Wang Q, et al. Rapid acquisition of shallow 3D geological features of undeveloped area in city by comprehensive Geophysical exploration:a case study on the Unicorn Island in Tianfu New District,Chengdu City[J]. Progress in Geophysics, 2021, 36(4): 1751-1759.
[6] 孟庆旺. 综合物探方法在嘉祥县青山省级地质公园溶洞勘察中的应用效果[J]. 物探与化探, 2020, 44(6):1464-1469.
[6] Meng Q W. The application effect of comprehensive geophysical method in karst cave investigation of Qingshan Provincial Geopark in Jiaxiang County[J]. Geophysical and Geochemical Exploration, 2020, 44(6): 1464-1469.
[7] 杨天春, 王丹齐, 张叶鹏, 等. 生产矿山岩溶灾害勘查中的综合物探应用研究[J]. 地球物理学进展, 2021, 36(3):1145-1153.
[7] Yang T C, Wang D Q, Zhang Y P, et al. Application research of comprehensive geophysical method to karst investigation in a productive mine[J]. Progress in Geophysics, 2021, 36(3): 1145-1153.
[8] 叶莉, 李非, 黄小年. 综合物探技术在东北公路工程多年冻土勘察中的应用与研究[J]. 灾害学, 2018, 33(S1):25-29.
[8] Ye L, Li F, Huang X N. Application andr esearch of comprehensive geophysical prospecting technology in permafrost exploration of northeast highway project[J]. Journal of Catastrophology, 2018, 33(S1): 25-29.
[9] 黄毓铭, 张晓峰, 谢尚平, 等. 综合物探方法在南宁地铁溶洞探测中的应用[J]. 地球物理学进展, 2017, 32(3):1352-1359.
[9] Huang Y M, Zhang X F, Xie S P, et al. Application of integrated geophysical method to Karst cave exploration of metro engineering in Nanning[J]. Progress in Geophysics, 2017, 32(3): 1352-1359.
[10] 高建华, 蔡耀军, 魏岩峻, 等. 综合物探在南水北调中线工程岩溶探测中的应用[J]. 工程地球物理学报, 2014, 11(4):533-536.
[10] Gao J H, Cai Y J, Wei Y J, et al. The application of comprehensive geophysical prospecting to karst detection in South-to-North water diversion middle rroute projiect[J]. Chinese Journal of Engineering Geophysics, 2014, 11(4): 533-536.
[11] 李丹, 肖宽怀. 高密度电法在铁峰山2号隧道工程探测中的应用[J]. 工程地球物理学报, 2006, 3(3):197-200.
[11] Li D, Xiao K H. High density electrical resistance exploration in the No.2 tiefengshan tunnel[J]. Chinese Journal of Engineering Geophysics, 2006, 3(3): 197-200.
[12] 孟凡松, 张刚, 陈梦君, 等. 高密度电阻率法二维勘探数据的三维反演及其在岩溶探测中的应用[J]. 物探与化探, 2019, 43(3):672-678.
[12] Meng F S, Zhang G, Chen M J, et al. 3D inversion of high density resistivity method based on 2D high density electrical prospecting data and its engineering application[J]. Geophysical and Geochemical Exploration, 2019, 43(3): 672-678.
[13] 王喜迁, 孙明国, 张皓, 等. 高密度电法在岩溶探测中的应用[J]. 煤田地质与勘探, 2011, 39(5):72-75.
[13] Wang X Q, Sun M G, Zhang H, et al. Application of high-density electrical technique in karst detection[J]. Coal Geology & Exploration, 2011, 39(5): 72-75.
[14] 马吉静. 高密度电阻率法的异常识别和推断——以溶洞探测和寻找地下水为例[J]. 地球物理学进展, 2019, 34(4):1489-1498.
[14] Ma J J. Anomaly identification and inference of high density resistivity method:take karst cave exploration and groundwater exploration as an example[J]. Progress in Geophysics, 2019, 34(4): 1489-1498.
[15] 尚彦军, 金维浚, 肖刚, 等. AMT 和高密度电法结合探测稻城LHAASO 项目区隐伏断层和基岩埋深[J]. 地球物理学进展, 2021, 36(1):250-257.
[15] Shang Y J, Jin W J, Xiao G, et al. Combination of AMT and high-density electrical method to detect buried fault and bedrock depth in the LHAASO field of Daocheng,Sichuan Province[J]. Progress in Geophysics, 2021, 36(1): 250-257.
[16] 陈乐寿, 王光锷. 大地电磁测深法[M]. 北京: 地质出版社, 1990.
[16] Chen L S, Wang G E. Magnetotelluric Sounding Method[M]. Beijing: Geological Publishing House, 1990.
[17] 张启生. 音频大地电磁法原理及数据处理[J]. 内蒙古石油化工, 2010(19):26-28.
[17] Zhang Q S. AMT principles and data processing[J]. Inner Mongolia Petrochemical Industry, 2010 (19): 26-28.
[18] 李富, 周洪福, 唐文清, 等. 物化探方法在隐伏活动断裂探测中综合研究——以安宁河秧财沟断裂为例[J]. 地球物理学进展, 2019, 34(3):1199-1205.
[18] Li F, Zhou H F, Tang W Q, et al. Comprehensive study of geophysical and geochemical methods in detecting buried active faults: taking the Yangcaigou fault in Anning River as an example[J]. Progress in Geophysics, 2019, 34(3): 1199-1205.
[19] 甘伏平, 吕勇, 喻立平, 等. 氡气测量与CSAMT联合探测地下地质构造——以滇西潞西地区帕连,法帕剖面探测为例[J]. 地质通报, 2012, 31(2):389-395.
[19] Gan F P, Lyu Y, Yu L P, et al. The utilization of combined radon and CSAMT methods to detect underground geological structures: a case study of detection in Palian and Fapa profiles, Luxi area, western Yunnan Province[J]. Geological Bulletin of China, 2012, 31(2): 389-395.
[1] 周建兵, 罗锐恒, 贺昌坤, 潘晓东, 张绍敏, 彭聪. 文山小河尾水库岩溶含水渗漏通道的地球物理新证据[J]. 物探与化探, 2023, 47(3): 707-717.
[2] 王军成, 赵振国, 高士银, 罗传根, 李琳, 徐明钻, 李勇, 袁国境. 综合物探方法在滨海县月亮湾地热资源勘查中的应用[J]. 物探与化探, 2023, 47(2): 321-330.
[3] 覃剑文, 姜晓腾, 谢贵城, 孙汉武, 何流, 孙怀凤. 基于高密度电法的城市复杂环境岩溶探查研究——以贵港市北环新村为例[J]. 物探与化探, 2023, 47(2): 530-539.
[4] 余长恒, 郑健, 张旭林, 周昊, 王安平, 刘磊, 李易. 川南地区页岩气井平台钻前工程物探集成技术[J]. 物探与化探, 2023, 47(1): 99-109.
[5] 张健, 冯旭亮, 岳想平. 综合物探方法在隐伏岩溶探测中的应用[J]. 物探与化探, 2022, 46(6): 1403-1410.
[6] 张春来, 杨慧, 黄芬, 曹建华. 广西马山县岩溶区土壤硒含量分布及影响因素研究[J]. 物探与化探, 2021, 45(6): 1497-1503.
[7] 蔡盛. 张吉怀铁路隧道超前预报技术应用研究[J]. 物探与化探, 2021, 45(5): 1275-1280.
[8] 李谭伟, 李振兴, 葛延明, 邬远明. 综合物探方法在株洲湘江大桥勘察中的应用[J]. 物探与化探, 2021, 45(3): 785-792.
[9] 陆泽峰. 高山峡谷地区桥址区岩溶发育特征地球物理勘察[J]. 物探与化探, 2021, 45(1): 252-256.
[10] 孟庆旺. 综合物探方法在嘉祥县青山省级地质公园溶洞勘察中的应用效果[J]. 物探与化探, 2020, 44(6): 1464-1469.
[11] 李望明, 易强, 刘声凯, 肖利权, 李俊. 湘西北岩溶石山缺水地区直流电法找水实例[J]. 物探与化探, 2020, 44(6): 1294-1300.
[12] 高利君, 李宗杰, 李海英, 王虹, 黄超. 塔里木盆地深层岩溶缝洞型储层三维雕刻“五步法”定量描述技术研究与应用[J]. 物探与化探, 2020, 44(3): 691-697.
[13] 邬健强, 赵茹玥, 甘伏平, 张伟, 刘永亮, 朱超强. 综合电法在岩溶山区地下水勘探中的应用——以湖南怀化长塘村为例[J]. 物探与化探, 2020, 44(1): 93-98.
[14] 王战军. 电法在追索水库坝区地下暗河中的应用[J]. 物探与化探, 2019, 43(5): 1157-1162.
[15] 牛俊强, 范威, 郭昆. 武汉城市圈岩溶热储水化学特征及水—岩作用研究[J]. 物探与化探, 2019, 43(4): 741-748.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com