Please wait a minute...
E-mail Alert Rss
 
物探与化探  2021, Vol. 45 Issue (5): 1179-1188    DOI: 10.11720/wtyht.2021.0201
  地质调查·资源勘查 本期目录 | 过刊浏览 | 高级检索 |
地球物理方法在砂岩型铀矿勘查中的应用进展
封志兵1,2,3(), 聂冰锋2, 聂逢君3(), 江丽2, 夏菲3, 李满根3, 严兆彬3, 何剑锋1, 程若丹2
1.东华理工大学 江西省放射性地学大数据技术工程实验室, 江西 南昌 330013
2.东华理工大学 地球物理与测控技术学院, 江西 南昌 330013
3.东华理工大学 核资源与环境国家重点实验室, 江西 南昌 330013
Application progress of geophysical methods in exploration of sandstone-type uranium deposit
FENG Zhi-Bing1,2,3(), NIE Bing-Feng2, NIE Feng-Jun3(), JIANG Li2, XIA Fei3, LI Man-Gen3, YAN Zhao-Bin3, HE Jian-Feng1, CHENG Ruo-Dan2
1. Jiangxi Engineering Laboratory on Radioactive Geoscience and Big Data Technology, East China University of Technology, Nanchang 330013, China
2. School of Geophysics and Measurement-Control Technology, East China University of Technology, Nanchang 330013, China
3. State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, China
全文: PDF(601 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

砂岩型铀矿是当今我国铀矿勘探的主要类型。地球物理方法在沉积盆地油气、煤等能源矿产勘查中得到广泛应用,其在同盆产出的砂岩型铀矿找矿与勘探中理应担当重任。文章从砂岩型铀矿成矿理论和控矿因素出发,结合勘探实际情况,探讨各地球物理方法的应用现状、存在问题和发展趋势。在实际应用中,地球物理测井在直接定位铀矿和定量计算平米铀含量等方面发挥重要作用,地面地球物理方法在查明沉积建造、断裂、地质体岩性和基底起伏等铀成矿环境方面有优势。为确保地球物理方法的应用效果,需要在方法选择、测线布置、数据处理和解释等全过程紧密结合已有地质信息,还需根据勘探实际情况选择相适应的地球物理方法(组合)。文章强调,重磁勘探可为盆地内部有利勘探区的优选和后期地质、地球物理勘探工作的布置提供依据,应在此类铀矿找矿与勘探前期工作中得到足够的重视。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
封志兵
聂冰锋
聂逢君
江丽
夏菲
李满根
严兆彬
何剑锋
程若丹
关键词 砂岩型铀矿放射性勘查地球物理方法层间氧化带    
Abstract

Sandstone-type uranium deposits are the main type of uranium resources in China. Geophysical exploration methods are widely used to explore energy and mineral resources such as oil, gas, and coal in sedimentary basins, and they should also play an important role in the exploration of sandstone-type uranium deposits. Based on actual exploration conditions, this paper explores the current application status, existing problems, and development trends of geophysical exploration methods from the aspects of the metallogenic theory and ore-controlling factors of sandstone-type uranium deposits. In practical application, geophysical logging plays an important role in the direct positioning of uranium deposits and the quantitative calculation of uranium content per square meter, while the surface geophysical methods enjoy advantages in ascertaining uranium metallogenic environments such as sedimentary suites, faults, the lithology of rock masses, and basement relief. To ensure the application effects of geophysical exploration methods, it is necessary to closely combine the existing geological information in the whole process of method selection, survey line arrangement, and data processing and interpretation. Meanwhile, it is also necessary to select comprehensive geophysical exploration methods as required by actual conditions. It should be emphasized that the gravity and magnetic data can provide bases for the selection of optimal exploration areas inside basins and the arrangement of geological and geophysical exploration in the late stage. Therefore, enough attention should be paid to them in the prospecting and preliminary exploration work of uranium deposits.

Key wordssandstone-type uranium deposit    radioactive prospecting    geophysical methods    interlayer oxidation zone
收稿日期: 2021-04-08      修回日期: 2021-07-22      出版日期: 2021-10-20
ZTFLH:  P631  
基金资助:国家自然科学基金项目(U2067202);国家自然科学基金项目(41862010);国家自然科学基金项目(42072099);江西省教育厅科技计划项目(GJJ170480);江西省放射性地学大数据技术工程实验室开放基金项目(JELRGBDT202007);中核集团龙灿工程科研项目(地LCEQ01);东华理工大学核资源与环境国家重点实验室开放基金项目(NRE1809)
通讯作者: 聂逢君
作者简介: 封志兵(1989-),男,江西临川人,博士,从事砂岩型铀矿成矿作用与探测技术研究工作。Email: zbfengjl@163.com
引用本文:   
封志兵, 聂冰锋, 聂逢君, 江丽, 夏菲, 李满根, 严兆彬, 何剑锋, 程若丹. 地球物理方法在砂岩型铀矿勘查中的应用进展[J]. 物探与化探, 2021, 45(5): 1179-1188.
FENG Zhi-Bing, NIE Bing-Feng, NIE Feng-Jun, JIANG Li, XIA Fei, LI Man-Gen, YAN Zhao-Bin, HE Jian-Feng, CHENG Ruo-Dan. Application progress of geophysical methods in exploration of sandstone-type uranium deposit. Geophysical and Geochemical Exploration, 2021, 45(5): 1179-1188.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2021.0201      或      https://www.wutanyuhuatan.com/CN/Y2021/V45/I5/1179
成矿模式 产出位置 典型铀矿 控矿因素 地球物理勘查方法
层间氧化带型 盆缘斜坡 伊犁盆地南缘
系列铀矿
沉积建造
铀源
断裂
基底起伏
航空γ能谱测量
CSAMT法
区域重力场数据处理与解释
古河谷型 盆缘/盆内裂谷 二连盆地古河道
系列铀矿
沉积建造
铀源
基底起伏
断裂
航空γ能谱测量
浅层地震勘探
重力勘探
盆地内部 盆地内部隆起 松辽盆地西南部
系列铀矿
基底起伏
断裂
沉积建造
区域重磁场数据处理与解释
浅层地震勘探
Table 1  不同类型铀矿矿床特征及其适用地球物理方法
[1] 张金带, 李子颖, 苏学斌, 等. 核能矿产资源发展战略研究[J]. 中国工程科学, 2019, 21(1):113-118.
[1] Zhang J D, Li Z Y, Su X B, et al. Development strategy of nuclear energy mineral resources[J]. Strategic Study of CAE, 2019, 21(1):113-118.
[2] 张金带. 我国砂岩型铀矿成矿理论的创新和发展[J]. 铀矿地质, 2016, 32(6):321-332.
[2] Zhang J D. Innovation and development of metallogenic theory for sandstone-type uranium deposit in China[J]. Uranium Geology, 2016, 32(6):321-332.
[3] 邓军, 王庆飞, 高帮飞, 等. 鄂尔多斯盆地演化与多种能源矿产分布[J]. 现代地质, 2005, 19(4):538-545.
[3] Deng J, Wang Q F, Gao B F, et al. Evolution of Ordos Basin and its distribution of various energy resources[J]. Geoscience, 2005, 19(4):538-545.
[4] 朱西养. 层间氧化带砂岩型铀矿元素地球化学特征——以吐哈伊犁盆地铀矿床为例[D]. 成都:成都理工大学, 2005.
[4] Zhu X Y. The elements geoehemisty charaeteristies of interlayer oxidation zone in sandstone type uranium deposits: A case study of the uranium deposit in Yili basin and Turpan-Hami Basin[D]. Chengdu:Chengdu University of Technology, 2005.
[5] Feng Z B, Nie F J, Deng J Z, et al. Spatial-temporal collocation and genetic relationship among uranium, coal, and hydrocarbons and its significance for uranium prospecting: A case from the Mesozoic-Cenozoic uraniferous basins, North China[J]. Russian Geology and Geophysics, 2017, 58(5):611-623.
doi: 10.1016/j.rgg.2016.10.013
[6] 张成勇, 聂逢君, 刘庆成, 等. 二连盆地巴彦乌拉地区砂岩型铀矿目的层电测井曲线响应分析[J]. 铀矿地质, 2010, 26(2):101-107,119.
[6] Zhang C Y, Nie F J, Liu Q C, et al. Discussion on electrical logging response of target layer for sandstone-type uranium deposits of Bayanwula area, Erlian basin[J]. Uranium Geology, 2010, 26(2):101-107,119.
[7] 张成勇, 聂逢君, 刘庆成, 等. 二连盆地巴彦乌拉地区砂岩型铀矿目的层电测井曲线响应分析[J]. 铀矿地质, 2010, 26(2):101-107,119.
[7] Zhang C Y, Nie F J, Liu Q C, et al. Discussion on electrical logging response of target layer for sandstone-type uranium deposits of Bayanwula area, Erlian basin[J]. Uranium Geology, 2010, 26(2):101-107,119.
[8] 邓刘敏, 葛祥坤, 刘章月, 等. 松辽盆地西南部DL铀矿带铀赋存状态及矿物组成特征[J]. 铀矿地质, 2021, 37(2):192-204.
[8] Deng L M, Ge X K, Liu Z Y, et al. The occurrence and mineral composition of uranium ore of DL mineralized zone in southwestern Songliao Basin[J]. Uranium Geology, 2021, 37(2):192-204.
[9] 袁桂琴, 熊盛青, 孟庆敏, 等. 地球物理勘查技术与应用研究[J]. 地质学报, 2011, 85(11):1744-1805.
[9] Yuan G Q, Xiong S Q, Meng Q M, et al. Application research of geophysical prospecting techniques[J]. Acta Geologica Sinica, 2011, 85(11):1744-1805.
[10] 孙龙德, 方朝亮, 撒利明, 等. 地球物理技术在深层油气勘探中的创新与展望[J]. 石油勘探与开发, 2015, 42(4):414-424.
[10] Sun L D, Fang C L, Sa L M, et al. Innovation and prospect of geophysical technology in the exploration of deep oil and gas[J]. Petroleum Exploration and Development, 2015, 42(4):414-424.
doi: 10.1016/S1876-3804(15)30033-1
[11] 封志兵, 聂逢君, 江丽, 等. 重力场特征与砂岩型铀矿的关系及地质意义[J]. 现代地质, 2014, 28(4):841-849.
[11] Feng Z B, Nie F J, Jiang L, et al. Correlation of gravity field characteristics with sandstone-type uranium deposit and its geological significance[J]. Geoscience, 2014, 28(4):841-849.
[12] 付锦, 赵宁博, 刘涛. 高精度磁测预测砂岩铀矿氧化带前锋线[J]. 物探与化探, 2017, 41(1):41-51.
[12] Fu J, Zhao N B, Liu T. The prediction of the front of the sandstone uranium deposit oxidation zone baseed on high-precision magnetic measurement[J]. Geophysical and Geochemical Exploration, 2017, 41(1):41-51.
[13] 王彦国, 刘鹏, 聂逢君, 等. 重磁勘探方法在砂岩型铀矿中的应用[J]. 东华理工大学学报:自然科学版, 2017, 40(1):42-46.
[13] Wang Y G, Liu P, Nie F J, et al. Applications of gravity and magnetic methods in sandstone-type Uranium deposits[J]. Journal of East China University of Technology:Natural Science Edition, 2017, 40(1):42-46.
[14] 李英宾, 李毅, 魏滨, 等. CSAMT和浅层地震在松辽盆地西南部铀矿勘查中的应用[J]. 地质与勘探, 2019, 55(6):1442-1451.
[14] Li Y B, Li Y, Wei B, et al. Application of CSAMT and shallow seismic reflection to uranium exploration in southwestern Songliao Basin[J]. Geology and Exploration, 2019, 55(6):1442-1451.
[15] 王浩锋, 刘波, 陈霜, 等. 综合物探测量在二连盆地沉积岩型铀矿勘查中的应用[J]. 地质与勘探, 2019, 55(1):127-134.
[15] Wang H F, Liu B, Chen S, et al. Application of integrated geophysical surveys to exploration of sedimentary rock type uranium in the Erlian basin[J]. Geology and Exploration, 2019, 55(1):127-134.
[16] 刘祜, 刘章月, 柯丹, 等. 层间氧化带砂岩型铀矿床的高精度磁测定位技术研究[J]. 铀矿地质, 2009, 25(5):296-302.
[16] Liu H, Liu Z Y, Ke D, et al. Study on positioning technique of interlayer oxidation zone sandstone hosted uranium deposit based on high resolution magnetic survey[J]. Uranium Geology, 2009, 25(5):296-302.
[17] 陈戴生, 李晓翠. 陆相盆地古水动力条件与铀成矿关系[J]. 铀矿地质, 2014, 30(4):219-222,251.
[17] Chen D S, Li X C. Analysis of the relationship between paleohydrodynamic condition and uranium mineralization in the continental basin[J]. Uranium Geology, 2014, 30(4):219-222,251.
[18] Min M Z, Chen J, Wang J, et al. Mineral paragenesis and textures associated with sandstone-hosted roll-front uranium deposits, NW China[J]. Ore Geology Reviews, 2005, 26(1-2):51-69.
doi: 10.1016/j.oregeorev.2004.10.001
[19] 吴柏林. 中国西北地区中新生代盆地砂岩型铀矿地质与成矿作用[D]. 西安:西北大学, 2005.
[19] Wu B L. Geology and metallogeny of sandstone-hosted uranium deposit in Meso-cenozoic basin, NE China [D]. Xi'an: Northwest University, 2005.
[20] 孙泽轩, 陈洪德, 陈勇, 等. 潜水层间氧化带砂岩型铀矿特征与成矿模式——以滇西地区山间盆地为例[J]. 矿床地质, 2006, 25(2):191-198.
[20] Sun Z X, Chen H D, Chen Y, et al. Characteristics and metallogenic models of phreatic interlayer oxidationzone sandstone-type uranium deposits: Case study of intermontanebasins in Western Yunnan Province[J]. Minerals Deposits, 2006, 25(2):191-198.
[21] Hou B H, Keeling J, Li Z Y. Paleovalley-related uranium deposits in Australia and China: A review of geological and exploration models and methods[J]. Ore Geology Reviews, 2017, 88:201-234.
doi: 10.1016/j.oregeorev.2017.05.005
[22] 刘池洋, 邱欣卫, 吴柏林, 等. 中—东亚能源矿产成矿域基本特征及其形成的动力学环境[J]. 中国科学:地球科学, 2007, 37(S1):1-15.
[22] Liu C Y, Qiu X W, Wu B L, et al. Evolution of Ordos Basin and its distribution of various energy resources[J]. Geoscience:Earth Science, 2007, 37(S1):1-15.
[23] 聂逢君, 林双幸, 严兆彬, 等. 尼日尔特吉达地区砂岩中铀的热流体成矿作用[J]. 地球学报, 2010, 31(6):819-831.
[23] Nie F J, Lin S X, Yan Z B, et al. Hydrothermal mineralization of uranium in sandstone, Teguida, Niger[J]. Acta Geoscientica Sinica, 2010, 31(6):819-831.
[24] 聂逢君, 严兆彬, 夏菲, 等. 内蒙古开鲁盆地砂岩型铀矿热流体作用[J]. 地质通报, 2017, 36(10):1850-1866.
[24] Nie F J, Yan Z B, Xie F, et al. Hot fluid flows in the sandstone-type uranium deposit in the Kailu basin, Northeast China[J]. Geological Bulletin of China, 2017, 36(10):1850-1866.
[25] 王飞飞. 油气煤铀同盆共存全球特征与中国典型盆地剖析[D]. 西安:西北大学, 2018.
[25] Wang F F. Characteristics of oil, gas, coal and uranium coexisting in the same basin worldwide and a case study of the Ordos Basin in China[D]. Xi'an: Northwest University, 2018.
[26] 封志兵, 聂逢君, 严兆彬, 等. 松辽盆地西部斜坡铀成矿条件及聚铀模式[J]. 大庆石油地质与开发, 2013, 32(4):590-606.
[26] Feng Z B, Nie F J, Yan Z B, et al. Mineralizing conditions and metallogenic model of uranium in west slope of Songliao Basin[J]. Petroleum Geology and Oilfield Development in Daqing, 2013, 32(4):590-606.
[27] 聂逢君, 张成勇, 姜美珠, 等. 吐哈盆地西南缘地区砂岩型铀矿含矿目的层沉积相与铀矿化[J]. 地球科学, 2018, 43(10):3584-3602.
[27] Nie F J, Zhang C Y, Jiang M Z, et al. Relationship of depositional facies and microfacies to uranium mineralization in sandstone along the southern margin of Turpan-Hami Basin[J]. Earth Science, 2018, 43(10):3584-3602.
[28] 刘波, 苗爱生, 彭云彪, 等. 兴蒙地区中—新生代盆地铀成矿特征、机理及其动力学背景研究进展[J]. 地质学报, 2020, 94(12):3689-3711.
[28] Liu B, Miao A S, Peng Y B, et al. Research advances in uranium metallogenic characteristics, mechanism and dynamic background in the Mesozoic-Cenozoic basins of the Xingmeng area, North China[J]. Acta Geologica Sinica, 2020, 94(12):3689-3711.
[29] 刘燕戌, 路文芬, 杨冬红, 等. 基于重磁资料的铀矿预测研究——以松辽盆地西部为例[J]. 地球学报, 2021, 42(1):63-73.
[29] Liu Y X, Lu W F, Yang D H, et al. The prediction of uranium deposit based on gravity and magnetic data: Exemplified by Western Songliao Basin[J]. Acta Geoscientica Sinica, 2021, 42(1):63-73.
[30] 吴仁贵, 胡志强, 巫建华, 等. 富铀地质体与成矿铀源关系探讨[J]. 东华理工大学学报:自然科学版, 2018, 41(4):358-363.
[30] Wu R G, Hu Z Q, Wu J H, et al. Relationship between rich uranium geological body and source of uranium mineralization[J]. Journal of East China University of Technology:Natural Science, 2018, 41(4):358-363.
[31] 李西得, 刘军港. 二连盆地卫镜岩体风化作用地球化学特征研究[J]. 铀矿地质, 2020, 36(5):336-345.
[31] Li X D, Liu J G. Study on weathering feature of Weijing pluton in Erlian Basin, Inner Mongolia[J]. Uranium Geology, 2020, 36(5):336-345.
[32] 吴柏林, 孙斌, 程相虎, 等. 铀矿沉积学研究与发展[J]. 沉积学报, 2017, 35(5):1044-1053.
[32] Wu B L, Sun B, Cheng X H, et al. Study and prospect for sedimentology of uranium deposit[J]. Acta Sedimentologica Sinica, 2017, 35(5):1044-1053.
[33] 颜新林. 松辽盆地钱家店地区上白垩统辉绿岩特征及铀成矿作用[J]. 东北石油大学学报, 2018, 42(1):40-48.
[33] Yan X L. Characteristics and uranium mineralization of upper cretaceous diabase in Qianjiadian area, Songliao Basin[J]. Journal of Northeast Petroleum University, 2018, 42(1):40-48.
[34] 吴慧山, 谈成龙. 我国核地球物理勘查的若干新进展[J]. 地球物理学报, 1997, 40(S1):317-325.
[34] Wu H S, Tan C L. Several new advances in nuclear geophysical exploration in China[J]. Chinese Journal of Geophysics, 1997, 40(S1):317-325.
[35] 李必红, 程纪星, 杨龙泉, 等. 放射性物探在相山盆地深部火成岩型铀矿勘查中的应用[J]. 世界核地质科学, 2017, 34(3):161-166,179.
[35] Li B H, Cheng J X, Yang L Q, et al. Application of radioactive geophysical exploration for the deep volcanic rock type uranium deposit exploration in Xiangshan basin[J]. World Nuclear Geoscience, 2017, 34(3):161-166,179.
[36] 张凯, 付锦, 龚育龄, 等. 主要放射性物探方法在砂岩型铀矿勘查中的应用分析[J]. 世界核地质科学, 2015, 32(1):46-50.
[36] Zhang K, Fu J, Gong Y L, et al. Analysis on application of major radioactive geophysical methods for sandstone type uranium deposits[J]. World Nuclear Geoscience, 2015, 32(1):46-50.
[37] 胡航, 蒋喆, 李世龙, 等. 土壤氡气测量在二连盆地马尼特坳陷南缘EG地区的应用[J]. 中国煤炭地质, 2018, 30(12):67-70.
[37] Hu H, Jiang Z, Li S L, et al. Application of soil randon measurement in Engerz area, Southern Manit depression, Erenhot Basin[J]. Coal Geology of China, 2018, 30(12):67-70.
[38] 杨龙泉, 李必红, 赵丹, 等. 铀矿体上方均匀覆盖层中氡迁移的数值模拟[J]. 铀矿地质, 2020, 36(5):441-452.
[38] Yang L Q, Li B H, Zhao D, et al. Numerical simulation for radon migration in the homogeneous overburden layer above uranium ore body[J]. Uranium Geology, 2020, 36(5):441-452.
[39] 韩绍阳, 侯惠群, 腰善丛, 等. 我国可地浸砂岩型铀矿勘查方法技术研究[J]. 铀矿地质, 2004, 20(5):306-314.
[39] Han S Y, Hou H Q, Yao S C, et al. Study of techniques for prospecting and exploration of in-situ leachable sandstone-type uranium deposits in China[J]. Uranium Geology, 2004, 20(5):306-314.
[40] 郭福生, 辜骏如. 能谱特征参数$\overline {TH}$/与$\overline {TH}$/$\overline {U}$之差异及古铀量计算公式的修正[J]. 铀矿地质, 1997, 13(6):356-358,374.
[40] Guo F S, Gu J R. The difference between spectral characteristic parameter $\overline {TH}$/ and $\overline {TH}$/$\overline {U}$ and the r..evised formula for calculating paleo-uranium abundance[J]. Uranium Geology, 1997, 13(6):356-358,374.
[41] 刘庆成. 铀矿地面物化探的发展与应用[J]. 世界核地质科学, 2004, 21(1):38-45.
[41] Liu Q C. Technology development of uranium geophysical and geochemical exploration and its application[J]. World Nuclear Geoscience, 2004, 21(1):38-45.
[42] 赵宁博, 付锦, 刘涛, 等. 地形对砂岩型铀矿氡气测量的干扰作用及其修正方法[J]. 物探与化探, 2017, 41(4):667-671.
[42] Zhao N B, Fu J, Liu T, et al. The terrain interference to radon measurement in sandstone-type uranium deposit and its correction method[J]. Geophysical and Geochemical Exploration, 2017, 41(4):667-671.
[43] 赵宁博, 付锦, 刘涛. 伊犁盆地南缘砂岩型铀矿航磁特征分析及信息增强[J]. 地球物理学进展, 2017, 32(2):553-558.
[43] Zhao N B, Fu J, Liu T. Aeromagnetic characteristic analysis and information enhancement of sandstone-type uranium deposit in the southern margin of Yili basin[J]. Progress in Geophysics, 2017, 32(2):553-558.
[44] 黄笑. 砂岩型铀矿钻孔测井相特征与铀成矿关系[D]. 南昌:东华理工大学, 2017.
[44] Huang X. Study on the relationship between drill logging characteristics and uranium mineralization in sandstone-type uranium deposit[D]. Nanchang:East China University of Technology, 2017.
[45] 汤彬, 吴永鹏, 张雄杰, 等. 高精度能谱测井与234mPa 特征γ射线的“直接铀定量”技术[J]. 核技术, 2012, 35(10):745-750.
[45] Tang B, Wu Y P, Zhang X J, et al. High precision energy spectrum logging and direct uranium quantification technique for 234mPa characteristic gamma rays[J]. Nuclear Techniques, 2012, 35(10):745-750.
[46] 王卫国, 宫文杰, 姜山, 等. 二连盆地乌尼特地段铀矿勘探中的测井资料分析[J]. 铀矿地质, 2010, 26(6):365-368.
[46] Wang W G, Gong W J, Jiang S, et al. Analysis of logging data for uranium exploration in Wunite segment, Er’lian basin[J]. Uranium Geology, 2010, 26(6):365-368.
[47] 李宝华. 煤田测井在砂岩型铀矿勘查选区中的应用[J]. 中国煤炭地质, 2014, 26(9):81-84.
[47] Li B H. Application of coalfield logging in the exploration and selection of sandstone-type uranium deposits[J]. Coal Geology of China, 2014, 26(9):81-84.
[48] 吴曲波, 曹成寅, 李子伟. 准噶尔盆地五彩湾地区砂岩型铀矿地震勘探技术[J]. 物探与化探, 2018, 42(6):1134-1143.
[48] Wu Q B, Cao C Y, Li Z W. The seismic exploration technology of the sandstone-type uranium deposit in Wucaiwan area of Junggar Basin[J]. Geophysical and Geochemical Exploration, 2018, 42(6):1134-1143.
[49] 吴曲波, 李子伟, 潘自强, 等. 砂岩型铀矿地震勘探中若干问题研究[J]. 地球物理学进展, 2017, 32(5):2097-2106.
[49] Wu Q B, Li Z W, Pan Z Q, et al. Study on some problems in the seismic exploration of sandstone type uranium deposits[J]. Progress in Geophysics, 2017, 32(5):2097-2106.
[50] 梁建刚, 杨为民, 孙大鹏, 等. 二维地震勘探在大庆长垣南端砂岩型铀矿勘查中的应用[J]. 物探与化探, 2020, 44(6):1322-1328.
[50] Liang J G, Yang W M, Sun D P, et al. The application of 2D seismic exploration to the exploration of sandstone-type uranium deposits at the southern end of Daqing placanticline[J]. Geophysical and Geochemical Exploration, 2020, 44(6):1322-1328.
[51] 吴曲波, 黄伟传, 乔宝平, 等. 砂岩型铀矿三维地震勘探采集关键技术及效果[J]. 地球物理学进展, 2020, 35(6):2239-2249.
[51] Wu Q B, Huang W C, Qiao B Q, et al. Key acquisition technology of 3D seismic exploration for sandstone-type uranium deposits and its applied results[J]. Progress in Geophysics, 2020, 35(6):2239-2249.
[52] 汤洪志, 邓居智. 电法勘探[M]. 北京: 地质出版社, 2015.
[52] Tang H Z, Deng J Z. Electrical exploration [M]. Beijing: Geological Publishing House, 2015.
[53] 汤洪志, 刘庆成, 苏兆锋, 等. 可地浸层间氧化带砂岩型铀矿自然电场形成机理及自然电位异常模拟与应用[J], 铀矿地质, 2006, 22(3):168-176.
[53] Tang H Z, Liu Q C, Su Z F, et al. Formation mechanism of self-potential at ISL-amenable interlayer oxidation zone sandstone-type uranium deposit and the simulation and application of self-potential anomalies[J]. Uranium Geology, 2006, 22(3):168-176.
[54] 王伟, 黄玉龙, 刘波, 等. CSAMT 与土壤氡气测量在砂岩型铀矿勘查中的应用:以内蒙古巴音杭盖地区为例[J]. 地质与勘探, 2019, 55(5):1241-1249.
[54] Wang W, Huang Y L, Liu B, et al. Application of the CSAMT method and soil radon measurement in surveys for sandstone-type uranium deposits: An example of the Bayinhanggai area, Inner Mongolia[J]. Geology and Exploration, 2019, 55(5):1241-1249.
[55] 马小雷, 袁炳强, 许文强, 等. 鄂尔多斯盆地南缘重磁场特征及其与砂岩型铀矿关系[J]. 地质与勘探, 2016, 52(4):647-656.
[55] Ma X L, Yuan B Q, Xu W Q, et al. The relationship between features of gravity and magnetic field and sandstone-type uranium deposits in the south of Ordos Basin[J]. Geology and Exploration, 2016, 52(4):647-656.
[56] 江民忠, 张积运, 石岩, 等. 微航磁异常与可地浸砂岩型铀矿床[J]. 铀矿地质, 2007, 23(5):298-304.
[56] Jiang M Z, Zhang J Y, Shi Yan, et al. Weak-aeromagnetic anomaly and in-situ leachable sandstone-type uranium deposit[J]. Uranium Geology, 2007, 23(5):298-304.
[57] 侯增谦, 潘桂棠, 王安建, 等. 青藏高原碰撞造山带: Ⅱ.晚碰撞转换成矿作用[J]. 矿床地质, 2006, 25(5):521-541.
[57] Hou Z Q, Pan G T, Wang A J, et al. Metallogenesis in Tibetan collisional orogenic belt: Ⅱ. Mineralization in late-collisional transformation setting[J]. Mineral Deposits, 2006, 25(5):521-541.
[58] Cheng Y H, Wang S Y, Jin R S, et al. Global Miocene tectonics and regional sandstone-style uranium mineralization[J]. Ore Geology Reviews, 2019, 106:238-250.
doi: 10.1016/j.oregeorev.2019.02.003
[59] 程银行, 张天福, 曾威, 等. 中国北方中新生代盆地砂岩型铀超常富集的驱动力[J]. 大地构造与成矿学, 2020, 44(4):590-606.
[59] Cheng Y H, Zhang T F, Zeng W, et al. Driving forces for Sandstone-type Uranium super enrichment in Meso-Cenozoic Basins, North China[J]. Geotectonica et Metallogenic, 2020, 44(4):590-606.
[60] 张岳桥, 赵越, 董树文, 等. 中国东部及邻区早白垩世裂陷盆地构造演化阶段[J]. 地学前缘, 2004, 11(3):123-133.
[60] Zhang Y Q, Zhao Y, Dong S W, et al. Tectonic evolution stages of the early Cretaceous rift basins in Eastern China and adjacent areas and their geodynamic background[J]. Earth Science Frontiers, 2004, 11(3):123-133.
[61] 刘波, 时志强, 彭云彪, 等. 中国北方兴蒙地区叠合盆地砂岩型铀成矿特征及勘查方法综述[J]. 地质与勘探, 2019, 55(6):1343-1355.
[61] Liu B, Shi Z Q, Peng Y B, et al. Review on metallogenic characteristics and exploration methods of sandstone-type uranium deposits in superimposed basins in the Xingmeng area, northern China[J]. Geology and Exploration, 2019, 55(6):1343-1355.
[62] 秦明宽, 何中波, 刘章月, 等. 准噶尔盆地砂岩型铀矿成矿环境与找矿方向研究[J]. 地质论评, 2017, 63(5):1255-1269.
[62] Qin M K, He Z B, Liu Z Y, et al. Study on metallogenic environments and prospective direction of sandstone type uranium deposits in Junggar Basin[J]. Geological Review, 2017, 63(5):1255-1269.
[1] 喻翔, 汪硕, 胡英才, 段书新. 二连盆地北部玄武岩覆盖区电性结构与铀成矿环境研究[J]. 物探与化探, 2022, 46(5): 1157-1166.
[2] 黄笑, 余弘龙, 江丽, 王殿学, 周文博, 马振宇, 张亮亮, 唐国龙. 钍归一化法在松辽盆地开鲁坳陷大林地区地面伽马能谱资料处理中的应用研究[J]. 物探与化探, 2021, 45(2): 316-322.
[3] 杨玉勤, 张翔, 石连成, 邓德伟. 砂岩型铀矿航磁微弱异常提取方法[J]. 物探与化探, 2021, 45(1): 29-36.
[4] 梁建刚, 杨为民, 孙大鹏, 匡海阳. 二维地震勘探在大庆长垣南端砂岩型铀矿勘查中的应用[J]. 物探与化探, 2020, 44(6): 1322-1328.
[5] 吴曲波, 曹成寅, 李子伟. 准噶尔盆地五彩湾地区砂岩型铀矿地震勘探技术[J]. 物探与化探, 2018, 42(6): 1134-1143.
[6] 刘明辉, 薛建, 王者江, 王元新, 申文斌. 工程场地隐伏断裂的探测与地震活动性评价[J]. 物探与化探, 2018, 42(4): 839-845.
[7] 吴曲波, 李子伟, 潘自强, 曹成寅, 乔宝平. 砂岩型铀矿地震勘探技术应用现状与发展[J]. 物探与化探, 2017, 41(4): 648-655.
[8] 赵宁博, 付锦, 刘涛, 张东辉. 地形对砂岩型铀矿氡气测量的干扰作用及其修正方法[J]. 物探与化探, 2017, 41(4): 667-671.
[9] 徐善法, 刘汉彬, 王玮, 张必敏, 姚文生. 深穿透地球化学方法在十红滩砂岩型铀矿中的试验研究[J]. 物探与化探, 2017, 41(2): 189-193.
[10] 付锦, 赵宁博, 刘涛. 高精度磁测预测砂岩铀矿氧化带前锋线[J]. 物探与化探, 2017, 41(1): 45-51.
[11] 闫红圃, 刘文斌, 程兴国. 津巴布韦Mutawatawa地区Chelsea East金矿床多元信息综合找矿方法及找矿模型[J]. 物探与化探, 2015, 39(3): 516-524.
[12] 刘武生, 李必红, 史清平, 贾立城, 赵兴齐. 二连盆地砂岩型铀矿土壤氡异常模型及应用[J]. 物探与化探, 2015, 39(2): 234-239.
[13] 孙栋华, 江民忠, 骆燕, 姜雪, 顾大钊. 尼日尔特吉达地区砂岩型铀矿综合信息找矿模型[J]. 物探与化探, 2015, 39(2): 273-282.
[14] 何进, 张亚峰, 韦建江. 煤矿采空区综合地球物理方法探测[J]. 物探与化探, 2012, 36(S1): 96-101.
[15] 赵希刚, 贺建国, 赵翠萍, 陈秋. 应用TEM资料分析麻黄泉地区地层结构及沉积环境[J]. 物探与化探, 2010, 34(4): 428-434.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com