Please wait a minute...
E-mail Alert Rss
 
物探与化探  2019, Vol. 43 Issue (4): 726-733    DOI: 10.11720/wtyht.2019.0018
     地质调查·资源勘查 本期目录 | 过刊浏览 | 高级检索 |
氡气及CSAMT联合探测在内蒙古五十家子盆地铀矿勘查中的应用研究
吴燕清, 王世成, 丁园, 王青, 王文正
核工业二四三大队,内蒙古 赤峰 024006
Application study of radon gas and CSAMT joint detection in the uranium exploration in the Wushijiazi Basin of Inner Mongolia
Yan-Qing WU, Shi-Chen WANG, Yuan DIN, Qing WANG, Wen-Zheng WANG
No. 243 Geological Party,CNNC, Chifeng 024006,China
全文: PDF(1340 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

五十家子火山盆地铀成矿地质条件优越,地表已发现大量蚀变裂隙带型铀矿化及异常点,为查明控矿断裂沿走向、倾向延伸变化情况及深部铀矿体有利富集部位,便于开展深部勘查工作。因此在研究区铀矿化密集部位开展了氡气及可控源大地电磁测深联合探测工作方法,大致查明了研究区主控矿断裂构造特征,并预测6处铀成矿有利部位,其中2处铀成矿有利部位经钻探查证,发现较好的工业铀矿体。表明氡气与可控源大地电磁测深联合探测寻找隐伏断裂和盲矿体效果显著,适用于控矿因素以断裂构造为主的铀矿勘查找矿工作,为今后铀矿找矿工作提供思路及方向,以期扩大铀矿找矿成果。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴燕清
王世成
丁园
王青
王文正
关键词 氡气测量CSAMT测量五十家子铀矿勘查    
Abstract

The uranium mineralization in the Wushijiazi volcanic basin enjoys a superior geological conditions. The uranium mineralization anomalies have been found on the surface, and they are of altered and fractured zone type. To identify the extension changes of ore-controlling fracture along the strike and dip as well as the favorable enrichment of uranium orebody, the authors carried out deep exploration. The joint detection of radon gas and CSAMT (Controlled Source Audiofrequency Magnetotelluric) was adopted in the study area where uranium mineralization is densely concentrated. The major structure and characteristics of ore-controlling fracture were identified, and six uranium mineralization favorable places were predicted, among which two places were drilled to verify, and industrial uranium orebodies were found in these two places. It is shown that the joint detection of radon gas and CSAMT is significantly effective in the search for concealed faults and fractures and blind orebodies; it can be adopted in the prospecting work of the uranium deposit with a major ore-controlling factor of fault structure, and can provide the future uranium deposit prospecting work with some ideas and directions, so as to accelerate uranium deposit prospecting work.

Key wordsradon gas measurement    CSAMT measurement    Wushijiazi    uranium exploration
收稿日期: 2019-01-12      出版日期: 2019-08-15
:  P631  
基金资助:中国核工业地质局铀矿调查评价项目“内蒙古林西县—巴林右旗铀矿资源调查评价”(201824)
作者简介: 吴燕清(1988-),男,工程师,主要从事铀矿资源调查评价及铀成矿理论研究工作。Email: 15847616797@163.com
引用本文:   
吴燕清, 王世成, 丁园, 王青, 王文正. 氡气及CSAMT联合探测在内蒙古五十家子盆地铀矿勘查中的应用研究[J]. 物探与化探, 2019, 43(4): 726-733.
Yan-Qing WU, Shi-Chen WANG, Yuan DIN, Qing WANG, Wen-Zheng WANG. Application study of radon gas and CSAMT joint detection in the uranium exploration in the Wushijiazi Basin of Inner Mongolia. Geophysical and Geochemical Exploration, 2019, 43(4): 726-733.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2019.0018      或      https://www.wutanyuhuatan.com/CN/Y2019/V43/I4/726
Fig.1  五十家子盆地地质略图
1—中、上侏罗统火山碎屑岩、凝灰质砂砾岩;2—中、上二叠统变质岩;3—花岗斑岩;4—花岗岩;5—火山岩;6—变质岩;7—地质界线;8—断裂构造;9—铀矿点;10—铀异常点;11—重点工作区范围
Fig.2  岩石电阻率特征
1—凝灰质砂砾岩;2—晶屑凝灰岩;3—蚀变凝灰质砂砾岩
Fig.3  氡气测量时间及测量深度实验曲线
a—测量时间实验曲线;b—抽气深度实验曲线
Fig.4  L2线地质—物探成果
a—氡浓度曲线;b—电阻率断面;c—地质推断成果;1—中侏罗统新民组;2—解释断裂构造;3—推测岩石风化面;4—预测成矿有利区;5—工业铀矿体;6—铀矿化体
Fig.5  L3线地质—物探成果
a—氡浓度曲线;b—反演电阻率;c—地质推断成果;1—中侏罗统新民组;2—解释断裂构造;3—推测岩石风化面;4—预测成矿有利区;5—工业铀矿体;6—铀矿化体
Fig.6  五十家子盆地重点工作区综合成果
1—第四系;2—上侏罗统满克头鄂博组;3—中侏罗统新民组;4—地质界线;5—不整合接触界线;6—实测断裂构造;7—解释断裂构造;8—铀矿点及编号;9—氡气、CSAMT综合剖面测量位置及编号;10—铀工业孔及编号
[1] 张金带 . 进入新时代以来我国铀矿勘查的重大进展和突破[J]. 铀矿地质, 2015,31(s1):129-140.
[1] Zhang J D . Great progress and breakthrough of China,s Uranium exploration in new Century[J]. Uranium Geology, 2015,31(s1):129-140.
[2] 杨亚新, 吴亚梅, 吴信民 , 等. 应用氡气测量和土壤天然热释光测量推断花岗岩型铀矿含矿部位——以下庄花岗岩型铀矿田为例[J]. 铀矿地质, 2007,23(3):178-192.
[2] Yang Y X, Wu Y M, Wu X M , et al. Identifying the site of granite uranium deposit with agdon survey and soil-natural themoluminescence surveg[J]. Uranium Geology, 2007,23(3):178-192.
[3] 李洪艺, 张澄博, 陈国能 , 等. 土氡测量在广从断裂探测中的初步应用[J]. 华南地震, 2011,31(2):61-70.
[3] Li H Y, Zhang C B, Chen G N , et al. Preliminary application of soil radon measurement in guang zhou-conghua fracture detection[J]. South China Journal of Seismology, 2011,31(2):61-70.
[4] King C Y, King B S, Evans W C , et al. Spatial radon anomalies on active fauIts in Califomia[J]. Applied Geochemistry, 1996,11(?): 497-510.
[5] Aitamimi M H, Abumurad K M . Radon anomaliesalongfauIts in North of Jordan[J]. Radiation Measurements, 2001,34(?): 397-400.
[6] Anderson K E, Dickinson J E, Edge R D , et al. Controlled source au-dio magnetotclluric(CSAMT)geophysical investigation in the upper San Pedor basin, southeastern Arizona[J]. Abstracts with Programs Gological Societl of America, 2008,10(6):137-142.
[7] 吴信民, 刘庆成, 邓居智 , 等. 综合物探方法寻找深部隐伏铀矿床的研究[J]. 矿物学报, 2004,24(2):181-184.
[7] Wu X M, Liu Q C, Deng J Z , et al. Exploration of deep uranium deposits with combined geophysical methods[J]. Acta Mineralogica Sinicd, 2004,24(2):181-184.
[8] 赵丹, 王南萍, 周觅 , 等. 活性炭测氡及分量化探在河北沽源县大官厂研究区铀矿勘查中的应用研究[J]. 铀矿地质, 2018,34(1):39-45.
[8] Zhao D, Wang N P, Zhou M , et al. Application of radon survey by activated carbon and partial extraction geochemical prospecting methods for uranium exploration prospecting methods for uranium exploration in Daguanchang of Guyuan,Hebei[J]. Uranium Geology, 2018,34(1):39-45.
[9] 翟大兴, 张永生, 田树刚 , 等. 内蒙古林西地区上二叠统林西组沉积环境与演变[J]. 古地理学报, 2015,17(3):359-370.
doi: 10.7605/gdlxb.2015.03.30
[9] Zhai D X, Zhang Y S, Tian S G , et al. Sedimentary environment and evolution of the upper permian Linxi formation in Linxi area, Inner Mongolia[J]. Journal of Palaeogeography, 2015,17(3):359-370.
[10] 吴燕清, 张春雨, 王青 , 等. 内蒙古新城子火山盆地铀成矿条件分析[J]. 铀矿地质, 2018,34(1):28-32.
[10] Wu Y Q, Zhang C Y, Wang Q , et al. Uranium metallogenic conditions evaluation of Xingchengzi volcanic basin inInner Mongolia[J]. Uranium Geology, 2018,34(1):28-32.
[11] 黄净白, 方锡珩, 谢佑新 . 中国铀矿床研究评价第二卷:火山岩型铀矿床. 中国核工业地质局、核工业北京地质研究院, 2011.
[11] Huang J B, Fang X H, Xie Y X . Research and evaluation of uranium deposits in China volume Ⅱ: volcanic-type uranium deposits.China Nuclear Geology,Beijing Institute of Geology, Nuclear Industry, 2011.
[12] 李长华, 吴燕清, 王世成 , 等. 大兴安岭中南段火山岩型铀矿成矿条件及远景预测[J]. 铀矿地质, 2018,34(6):329-336.
[12] Li C H, Wu Y Q, Wang S C , et al. Ore-forming conditiong and uranium prospective prediction of volcanic-type uranium deposits in the middle-southern Great Xing,an range[J]. Uranium Geology, 2018,34(6):329-336.
[13] 甘伏平, 吕勇, 喻立平 , 等. 氡气测量与CSAMT联合探测地下地质构造——以滇西潞西地区帕连、法帕剖面探测为例[J]. 地质通报, 2012,31(2-3):389-395.
[13] Gan F P, Lv Y, Yu L P , et al. The utilization of combined radon and CSAMT methods to deteet undergrolnd geological structures: a case study of detection in palian and Fapa profiles, Luxi area western Yunnan Province[J]. Geological Bulletin of China, 2012,31(2-3):389-395.
[14] 杨亚新, 刘庆成, 龙期华 , 等. 氡气测量在下庄铀矿田扩大矿床范围中的应用[J]. 物探与化探, 2003,27(3):184-186.
[14] Yang Y X, Liu Q C, Long Q H , et al. The application of radon gas survey to the expansion of the XiaZhuang uranium or efield[J]. Geophysical & Geochemical Exploration, 2003,27(3):184-186.
[15] 贾文懿, 方方, 周蓉生 , 等. 氡及其子体运移规律与机理研究[J]. 核技术, 2000,23(3):169-175.
[15] Jia W Y, Fang F, Zhou R S , et al. Studies on the migration rule and mechanism of radon and its daughters[J]. Nuclear Techniques, 2000,23(3):169-175.
[16] 吴慧山, 白云生, 林云飞 , 等. 氡迁移的接力传递作用[J]. 地球物理学报, 1997,40(1):136-142.
doi:
[16] Wu H S, Bai Y S, Lin Y F , et al. The action of relay transmission of the radon migration[J]. Acta Geophgsica Sinica, 1997,40(1):136-142.
[17] 柯丹, 宋亮, 王勇 , 等. 土壤瞬时测氡在相山火山岩型铀矿勘查中的应用[J]. 铀矿地质, 2015,31(s1):315-321.
[17] Ke D, Song L, Wang Y , et al. Application of soil radon survey in the exploration for volcanic-type uranium deposits in Xiangshan[J]. Uranium Geology, 2015,31(s1):315-321.
[18] 常桂兰 . 氡与氡的危害[J]. 铀矿地质, 2002,18(2):122-128.
[18] Chang G L . Radon and its hazards[J]. Uranium Geology, 2002,18(2):122-128.
[19] Patastefanou C . An overview of instrumention for measuring radon in soil gas and groundwaters[J]. Journal of Environment Radioactivity, 2002,63:271-283.
[20] 李长江, 麻士华, 朱兴盛 , 等. 矿产勘查中的分形、混沌与ANN[M]. 北京: 地质出版社, 1999.
[20] Li C J, Ma S H, Zhu X S , et al. Fractal, chaos and ANN in mineral exploration[M]. Beijing: Geological Publishing House, 1999.
[21] 戴慧敏, 宫传东, 鲍庆中 , 等. 区域化探数据处理中几种异常下限确定方法的对比——以内蒙古查巴奇地区水系沉积物为例[J]. 物探与化探, 2010,34(3):782-786.
[21] Dai H M, Gong C D, Bao Q Z , et al. A com parison of several threshold determ ination methods in geochem ical data processing:a case study of sereamsed ments in chabagi area of inner mongolia[J]. Geophysical & Geochemical Exploration, 2010,34(3):782-786.
[22] 刘国兴 . 电法勘探原理与方法[M]. 北京: 地质出版社, 2005.
[22] Liu G X. Principles and methods of electrical prospecting[M]. Beijing: Geological Publishing House, 2005.
[23] 李金铭 . 地电场与电法勘探[M]. 北京: 地质出版社, 2007.
[23] Li J M. Geoelectric field and electrical exploration[M]. Beijing: Geological Publishing House, 2007.
[24] 李茂, 王利民, 许第桥 . 可控源音频大地电磁测量法在砂岩型铀矿地质环境研究中的应用[J]. 铀矿地质, 2005,26(6):353-359.
[24] Li M, Wang L M, Xu D Q . Application of controlled-source audiomagnetotellaric method to metallogenic geologic environment of sandstone-typev uranium[J]. Uranium Geology, 2005,26(6):353-359.
[25] 黄力军, 陆桂福, 刘瑞德 . 可控源音频大地电磁测深法应用实例[J]. 物探化探计算技术, 2006,28(4):337-341.
[25] Huang L J, Lv G F, Liu R D . Application of controlled source audio magnetotelluric sounding method[J]. Computing Techniques for Geophysical Geochemical Exploration, 2006,28(4):337-341.
[26] 周明海, 唐国益, 杨青 . 可控源音频大地电磁测法(简称CSAMT)在铀金地质中的应用[J]. 铀矿地质, 1994,10(2):106-112.
[26] Zhou M H, Tang G Y, Yang Q . Theapplication of the controlled source audio frequency magnetotelluric method(CSAMT) in the geological work of uranium and gold[J]. Uranium Geology, 1994,10(2):106-112.
[27] 王峰, 吴志春, 陈凯 , 等. CSAMT法在深部地质结构探测中的应用——以相山铀矿田邹家山地区为例[J]. 物探与化探, 2016,40(1):17-20.
doi: 10.11720/wtyht.2016.1.03
[27] Wang F, Wu Z C, Chen K , et al. The application of CSAMT to detecting deep geological structures in the Zoujiashan area of the Xiangshan uranium orefield[J]. Geophysical & Geochemical Exploration, 2016,40(1):17-20.
[28] 刘祜, 段书新, 尹征平 , 等. 综合物探方法在长江铀矿田勘查中的应用[J]. 铀矿地质, 2015,31(s1):336-343.
[28] Liu H, Duan S X, Yin Z P , et al. Application of integrated geophysical methods in the exploration of Changjiang uranium ore field[J]. Uranium Geology, 2015,31(s1):336-343.
[1] 刘伟, 黄韬, 王庭勇, 刘怡, 张继, 刘文涛, 张琦斌, 李强. 综合物探方法在城市隐伏断裂探测中的应用[J]. 物探与化探, 2021, 45(4): 1077-1087.
[2] 李英宾. 可控源音频大地电磁测量对腾格尔坳陷东北缘下白垩统赛汉组砂体的识别及其地质意义[J]. 物探与化探, 2021, 45(3): 616-623.
[3] 李敬敏, 米耀辉, 骆遥. NURE航空计划回顾与新时代航空γ能谱勘查启示[J]. 物探与化探, 2021, 45(2): 394-402.
[4] 李英宾, 谢明宏, 张占彬, 李毅, 魏滨, 张伟. 综合物探方法在上杭盆地古石背地区铀矿勘查中的应用[J]. 物探与化探, 2020, 44(6): 1283-1293.
[5] 毕征峰. 五莲县中东部地区放射性环境地质调查[J]. 物探与化探, 2018, 42(4): 833-838.
[6] 赵宁博, 付锦, 刘涛, 张东辉. 地形对砂岩型铀矿氡气测量的干扰作用及其修正方法[J]. 物探与化探, 2017, 41(4): 667-671.
[7] 曹秋义, 王志宏, 山亚. 应用地-井TEM方法勘查铀矿[J]. 物探与化探, 2016, 40(5): 899-903.
[8] 孟凡兴, 聂斌, 邱崇涛, 何昕欣. 综合物探测量在鹿井红盆地区铀矿勘查中的应用[J]. 物探与化探, 2016, 40(1): 21-26.
[9] 李茂, 幺成雅, 邱崇涛, 吴迪, 牛禹, 吴勇. AMT与土壤氡测量在连山关—祁家堡子地区铀矿勘查中的应用[J]. 物探与化探, 2014, 38(1): 28-34.
[10] 赵明宣, 马惠珍, 辛永祺. 三种物探方法在煤矿采空区勘查中的应用效果对比[J]. 物探与化探, 2012, 36(S1): 51-56.
[11] 沈光银, 杜俐, 林银山. 综合物化探方法在寻找隐伏铀钼矿床中的应用[J]. 物探与化探, 2012, 36(5): 732-736.
[12] 陈希泉, 陈颉, 罗先熔, 欧阳菲, 文美兰. 地气(氡气)测量方法寻找隐伏含矿断裂试验[J]. 物探与化探, 2011, 35(6): 817-820.
[13] 姚锦其, 赵友方. 氡气测量在栗木锡铌钽矿外围的找矿效果[J]. 物探与化探, 2009, 33(3): 286-289,293.
[14] 刘敦旺 刘鸿福 梁永东. 活性炭测氡法的数据处理与应用[J]. 物探与化探, 2009, 33(2): 151-153.
[15] 王志宏,杨进,山科社. CSAMT在可地浸砂岩型铀矿勘查中的应用[J]. 物探与化探, 2005, 29(3): 227-229.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com