Please wait a minute...
E-mail Alert Rss
 
物探与化探  2017, Vol. 41 Issue (6): 991-997    DOI: 10.11720/wtyht.2017.6.01
  论文 本期目录 | 过刊浏览 | 高级检索 |
冻土区天然气水合物勘查技术研究主要进展与成果
方慧1, 2, 3, 孙忠军1, 2, 4, 徐明才1, 2, 林振洲1, 2, 3
1.国家现代地质勘查技术研究中心,河北 廊坊 065000;
2.中国地质科学院 地球物理地球化学勘查研究所,河北 廊坊 065000;
3.国土资源部地球物理电磁法探测技术重点实验室,河北 廊坊 065000;
4.中国地质科学院地球表层碳-汞地球化学循环重点实验室, 河北 廊坊 065000
Main achievements of gas hydrate exploration technology in permafrost regions of China
FANG Hui1, 2, 3, SUN Zhong-Jun1, 2, 4, XU Ming-Cai1, 2, LIN Zhen-Zhou1, 2, 3
1. National Modern Geological Exploration Technology Research Center, Langfang 065000, China;
2. Institute of Geophysical and Geochemical Exploration, CAGS, Langfang 065000, China;
3. Eelectromagnetic Detection Technology Key Laboratory of Ministry of Land and Resources, Langfang 065000, China;
4. Key Laboratory of Geochemical Cycling of Carbon and Mercury in the Earth's Critical Zone, Chinese Academy of Geological Sciences, Langfang 065000, China
全文: PDF(491 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 青藏高原多年冻土区分布在中纬度地带,天然气水合物赋存环境和基本特征既不同于海域水合物,也不同于极地冻土区水合物,缺少有效的勘探技术成为制约我国陆域天然气水合物资源调查与评价工作的主要技术瓶颈。在国家863计划、国土资源部行业科研专项和水合物国家专项共同支持下,开展了陆域冻土区天然气水合物勘查技术攻关,初步建成了陆域永久冻土区天然气水合物勘查的高精度地震勘探技术、音频大地电磁测深技术、超深探地雷达技术、地球化学勘查技术和综合地球物理测井技术;总结了冻土区天然气水合物地震学和电磁学识别标志,优选出了水合物地球化学勘查的有效指标,研发了水合物储层测井识别技术和储层参数评价技术;初步建立了冻土区天然气水合物物化探有效方法组合和物化探综合勘查模型;预测了水合物成藏有利区,提出的建议井位钻遇天然气水合物,方法有效性得到初步检验和应用。研究成果对推动陆域冻土区天然气水合物勘查技术进步、支撑我国冻土区天然气水合物资源评价与开发工作有重要意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
Abstract:The permafrost regions of the Tibetan Plateau are distributed in the middle latitudes of China,where the gas hydrate is different from the gas hydrate in sea area and polar permafrost area in existing environment and basic characteristics. The lack of effective exploration technology has become the major technical bottleneck that restricts the investigation and evaluation of natural gas hydrate resources in permafrost regions of China. Supported by National 863 Program, Special Research Project of Ministry of Land and Resources and National Special Project of Gas Hydrate, the authors studied the development of key technologies of natural gas hydrate exploration in the permafrost regions of China. The prorate exploration methods for China's terrestrial gas hydrate exploration in permafrost areas have been initially established, which include the high resolution seismic method, the audio magnetotelluric sounding technology, the ultra-deep ground penetrating radar (GPR) technology, geochemical exploration technology and integrated geophysical logging technology. The seismology and electromagnetism identifications of gas hydrate reservoir have been found, the effective index of hydrate geochemical exploration is optimized, and the logging identification technology and reservoir parameter evaluation technology of gas hydrate reservoir are developed. An effective combination method for geophysical and geochemical exploration and a comprehensive geophysical and geochemical exploration model have been tentatively established in permafrost regions. The favorable area of gas hydrate accumulation is predicted, and several gas hydrate reservoirs have been found in the well suggested by the authors, which shows that the validity of methods proposed by the authors are tentatively tested and applied. The research results have great significance for promoting the progress of gas hydrate exploration and for supporting the exploration and development of natural gas hydrate resources in permafrost regions of China.
收稿日期: 2017-09-15      出版日期: 2017-12-20
:  P631  
基金资助:国家高技术研究发展计划(863计划)课题(2012AA061403); 国土资源部公益性行业科研专项项目(201111019); 国家127专项项目(GZHL20110324,GZH201400305); 中国地质调查局地质调查项目(DD20160224)
作者简介: 方慧(1965-),男,博士,教授级高级工程师,主要从事冻土区天然气水合物勘查技术研究。Email: fanghui@igge.cn
引用本文:   
方慧, 孙忠军, 徐明才, 林振洲. 冻土区天然气水合物勘查技术研究主要进展与成果[J]. 物探与化探, 2017, 41(6): 991-997.
FANG Hui, SUN Zhong-Jun, XU Ming-Cai, LIN Zhen-Zhou. Main achievements of gas hydrate exploration technology in permafrost regions of China. Geophysical and Geochemical Exploration, 2017, 41(6): 991-997.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2017.6.01      或      https://www.wutanyuhuatan.com/CN/Y2017/V41/I6/991
[1] Sloan E D. Clathrate hydrates of natural gases[M]. 2nd ed. New York: Marcel Dekker Inc.,1998.
[2] Collett T S, Johnson A H, Knapp C C, et al. Natural gas hydrates: a review, in T.Collett, A. Johnson,C.Knapp,et al., eds., Natural gas hydrates—Energy resource potential and associated geologic hazards. AAPG Memoir 89, 2009:146-219.
[3] 王平康,祝有海,赵越,等. 极地天然气水合物勘探开发现状及对中国的启示[J].极地研究,2014,26(4):502-514.
[4] 祝有海,赵省民,卢振权. 中国冻土区天然气水合物的找矿选区及其资源潜力[J].天然气工业,2011,31(1):13-19.
[5] 祝有海,张永勤,文怀军,等. 青海祁连山冻土区发现天然气水合物[J].地质学报,2009,83(11):1762-1771.
[6] 徐明才,刘建勋,柴铭涛,等.青海省天峻县木里地区天然气水合物地震响应特征[J].地质通报,2011,30(12):1910-1917.
[7] He M X, Fang H, Zhong Q, et al. An experimental study of natural gas hydrate in permafrost by the electromagnetic method[C]// The 10th Ocean Mining & Gas Hydrates Symposium, Szczecin, Poland, Sep. 22-26, 2013:99-103.
[8] 姚大为,王书民,雷达,等. CSAMT 在祁连山永久冻土区天然气水合物调查中的应用[J].工程地球物理学报,2013,10(2):132-137.
[9] 杨志斌,孙忠军,李广之,等.青海省天峻县木里地区天然气水合物发现区浅表地球化学特征[J].地质通报,2011,30(12):1883-1890.
[10] Riedel M, Bellefleur G, Mair S, et al. Acoustic impedance inversion and seismic reflection continuity analysis for delineating gas hydrate resources near the Mallik research sites, Mackenzie Delta, Northwest Territories, Canada[J].Geophysics, 2009, 74(5): B125-B137.
[11] 刘建勋,张保卫,王小江,等.羌塘盆地浅层地震探测方法技术[J]. 物探与化探,2015,39(4): 678-685.
[12] 刘建勋,徐明才,王小江,等.高原冻土区三分量地震探测方法试验[J].物探与化探,2015,39(2):327-333.
[13] 徐建宇,姜春香,张保卫,等.浅层地震技术在陆域天然气水合物勘探中存在的问题及对策[J].物探与化探,2017,41(6):1127-1132.
[14] Xu M C,Sun Z J, Liu J X, et al. Validity experiment of natural gas hydrate in permafrost detected by seismic method[C]//The 10th Ocean Mining & Gas Hydrates Symposium, Szczecin, Poland, Sep. 22-26, 2013:121-125.
[15] 徐明才,刘建勋,柴铭涛,等.青海木里地区天然气水合物反射地震试验研究[J].地质与勘探,2012,48(6):1180-1187.
[16] 姜春香,李培,王小江,等.木里地区天然气水合物地震属性分析[J].物探与化探,2017,41(6):1019-1026.
[17] Fang H, Xu M C, Lin Z Z, et al. Geophysical characteristics of gas hydrate in the Muli area, Qinghai province[J].Journal of Natural Gas Science and Engineering, 2017, 37: 539-550.
[18] 裴发根,方慧,杜炳锐,等.AMT正演模拟及反演求导方法在探测冻土厚度中的应用——以青海木里地区多年冻土层为例[J].物探与化探,2016,40(2):405-410.
[19] 裴发根,何梅兴,仇根根,等.青藏高原冻土区AMT探测天然气水合物采集试验研究[J].物探与化探,2017,41(6):1113-1120.
[20] 裴发根,方慧,仇根根,等.青海木里冻土区AMT探测天然气水合物正演模拟研究[J].物探与化探,2017,41(6)1175-1182.
[21] 方慧,裴发根,何梅兴,等.音频大地电磁测深法探测冻土区天然气水合物有效性实验[J].物探与化探,2017,41(6):1068-1074.
[22] 白大为,杜炳锐,方慧,等.低频探地雷达探测冻土带天然气水合物正演模拟研究[J].物探与化探,2017,41(6):1060-1067.
[23] 白大为,杜炳锐,张鹏辉. 基于希尔伯特-黄变换的低频探地雷达弱信号处理技术及其在天然气水合物勘探中的应用[J].物探与化探,2017,41(6):1248-1254.
[24] 坚润堂,王造成. 青藏高原多年冻土区活动带天然气水合物地球化学特征[J].甘肃冶金,2006,28(2):33-35.
[25] 卢振权,吴必豪,饶竹,等.青藏铁路沿线多年冻土区天然气水合物的地质、地球化学异常[J].地质通报,2007,26(8):1029-1040.
[26] 吴自成,吕新彪,王造成.青藏高原多年冻土区天然气水合物的形成及地球化学勘查[J].地质科技情报,2006,25(4):9-14.
[27] 张志攀,祝有海,苏新.羌塘盆地沉积物热释光特征及潜在意义[J].现代地质,2008,22(3):452-456.
[28] 孙忠军,杨志斌,秦爱华,等.中纬度带天然气水合物地球化学勘查技术[J].吉林大学学报:地球科学版,2014,44(4):1063-1070.
[29] Sun Z J, Yang Z B, Mei H, et al. Geochemical characteristics of the shallow soil above the Muli gas hydrate reservoir in the permafrost region of the Qilian Mountains, China[J]. Journal of Geochemical Exploration, 2014, 139: 160-169.
[30] 杨志斌,周亚龙,孙忠军,等.祁连山木里地区天然气水合物地球化学勘查[J].物探与化探,2013,37(6):988-992.
[31] 张富贵,唐瑞玲,杨志斌,等.陆域天然气水合物地球化学勘查技术试验研究[J].物探与化探,2013,37(6):1043-1048.
[32] 张富贵,杨志斌,唐瑞玲,等.酸解烃技术在青海祁连山天然气水合物勘探中的应用[J].中国矿业,2016,25(Suppl.2):227-233.
[33] 周亚龙,孙忠军,张富贵,等.青海木里三露天天然气水合物土壤热释烃技术应用研究[J].现代地质,2015,29(5):1173-1179.
[34] 孙忠军,杨志斌,卢振权,等.青海木里三露天天然气水合物矿藏土壤微量元素地球化学特征[J].现代地质,2015,29(5):1164-1172.
[35] 周亚龙,张富贵,杨志斌,等.祁连山冻土区天然气水合物游离气测量技术试验[J].物探与化探,2017,41(6):1075-1080.
[36] 张富贵,张舜尧,唐瑞玲,等.青藏高原湿地冻土区活动层甲烷排放特征[J].物探与化探,2017,41(6):1027-1036.
[37] Sun Z J, Han Z Y, Fan H, et al. Natural thermoluminescence prospecting of gas hydrate in the Qilian mountains permafrost[C]//Qinghai. The 21th international ocean and polar engineering conference, Busan, Korea, June 15-20, 2014:34-39.
[38] Sun Z J, Zhang F G, Yang Z B, et al. Inert gas—an effective tool for natural gas hydrate exploration[C]//The 9th international conference on gas hydrate, Denver, Colorado USA, Jun 25-30, 2017.
[39] 唐瑞玲,孙忠军,张舜尧,等.冻土区天然气水合物的探途元素——卤族元素I和CL[J].物探化探计算技术,2016,38(4):553-559.
[40] 杨志斌,周亚龙,普嘎. 祁连山木里冻土区天然气水合物地球化学异常成因分析[J].物探化探计算技术,2014,36(6):723-729.
[41] 秦爱华,周亚龙,李永红,等.青海木里三露天天然气水合物地球化学远景评价[J].现代地质,2015,29(5):1242-1250.
[42] 林振洲,李洋,高文利,等.祁连山冻土区天然气水合物层位测井物性分析[J].物探与化探,2013,37(5):834-838.
[43] 林振洲,刘东明,潘和平,等.木里地区天然气水合物测井响应特征[J].物探与化探,2017,41(6):1012-1018.
[44] 覃瑞东,林振洲,潘和平,等.木里地区水合物及岩性测井识别方法[J].物探与化探,2017,41(6):1088-1098.
[45] 林振洲,孔广胜,潘和平,等.木里地区天然气水合物储层参数计算[J].物探与化探,2017,41(6):1099-1104.
[46] 秦臻,林振洲,潘和平,等.木里水合物测井评价系统[J].物探与化探,2017,41(6):1275-1280.
[47] 彭耀,李振宇,郑宗槟,等.羌塘盆地冻土层结构核磁共振信号响应研究与实践[J].CT理论与应用研究,2015,24(1):37-46.
[48] Cen Y, Wu T X, Zhao H Q, et al. Methane analysis using SCIAMACHY data in permafrost area of China [J]. SPIE Asia-Pacific Remote Sensing, 2012(10).
[49] 李栋梁, 卢静生, 梁德青. 祁连山冻土区天然气水合物形成对岩芯电阻率及介电常数的影响 [J]. 新能源进展, 2016, 4 (3): 179-183.
[50] Li D l, Lu J S, Liang D Q. P-Wave velocity of gas hydrate based on the DK-8 drilling cores from the qilian mountain permafrost [C]//Proceedings of the 8th International Conference on Gas Hydrates, Beijing, China, 2014.
[51] 孙忠军,方慧,刘建勋,等.祁连山冻土区三露天天然气水合物矿藏勘查模型[J].物探与化探,2017,41(6):998-1004.
[1] 陈秀娟, 刘之的, 刘宇羲, 柴慧强, 王勇. 致密储层孔隙结构研究综述[J]. 物探与化探, 2022, 46(1): 22-31.
[2] 肖关华, 张伟, 陈恒春, 卓武, 王艳君, 任丽莹. 浅层地震技术在济南地下空间探测中的应用[J]. 物探与化探, 2022, 46(1): 96-103.
[3] 石磊, 管耀, 冯进, 高慧, 邱欣卫, 阙晓铭. 基于多级次流动单元的砂砾岩储层分类渗透率评价方法——以陆丰油田古近系文昌组W53油藏为例[J]. 物探与化探, 2022, 46(1): 78-86.
[4] 陈大磊, 王润生, 贺春艳, 王珣, 尹召凯, 于嘉宾. 综合地球物理探测在深部空间结构中的应用——以胶东金矿集区为例[J]. 物探与化探, 2022, 46(1): 70-77.
[5] 周能, 邓可晴, 庄文英. 基于线性放电法的多道脉冲幅度分析器设计[J]. 物探与化探, 2022, 46(1): 221-228.
[6] 吴燕民, 彭正辉, 元勇虎, 朱今祥, 刘闯, 葛薇, 凌国平. 一种基于差分接收的电磁感应阵列探头的设计与实现[J]. 物探与化探, 2022, 46(1): 214-220.
[7] 王猛, 刘媛媛, 王大勇, 董根旺, 田亮, 黄金辉, 林曼曼. 无人机航磁测量在荒漠戈壁地区的应用效果分析[J]. 物探与化探, 2022, 46(1): 206-213.
[8] 张化鹏, 钱卫, 刘瑾, 武立林, 宋泽卓. 基于伪随机信号的磁电法渗漏模型试验[J]. 物探与化探, 2022, 46(1): 198-205.
[9] 张建智, 胡富杭, 刘海啸, 邢国章. 煤矿老窑采空区地—井TEM响应特征[J]. 物探与化探, 2022, 46(1): 191-197.
[10] 张宇哲, 孟麟, 王智. 基于Gmsh的起伏地形下井—地直流电法正演模拟[J]. 物探与化探, 2022, 46(1): 182-190.
[11] 马德志, 王炜, 金明霞, 王海昆, 张明强. 海上地震勘探斜缆采集中鬼波产生机理及压制效果分析[J]. 物探与化探, 2022, 46(1): 175-181.
[12] 张洁. 基于拉伸率的3DVSP道集切除技术及应用[J]. 物探与化探, 2022, 46(1): 169-174.
[13] 丁骁, 莫思特, 李碧雄, 黄华. 混凝土内部裂缝对电磁波传输特性参数的影响[J]. 物探与化探, 2022, 46(1): 160-168.
[14] 崔瑞康, 孙建孟, 刘行军, 文晓峰. 低阻页岩电阻率主控因素研究[J]. 物探与化探, 2022, 46(1): 150-159.
[15] 陈亮, 付立恒, 蔡冻, 李凡, 李振宇, 鲁恺. 基于模拟退火法的磁共振测深多源谐波噪声压制方法[J]. 物探与化探, 2022, 46(1): 141-149.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com