Please wait a minute...
E-mail Alert Rss
 
物探与化探  2017, Vol. 41 Issue (1): 129-135    DOI: 10.11720/wtyht.2017.1.20
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
电性源地-井瞬变电磁异常场响应特征初步分析
武军杰1,2, 李貅1, 智庆全2, 邓晓红2, 张杰2, 王兴春2, 杨毅2
1. 长安大学 地质工程与测绘学院, 陕西 西安 710054;
2. 中国地质科学院 地球物理地球化学勘查研究所, 河北 廊坊 065000
A preliminary analysis of anomalous TEM response characteristics in borehole with electric source transmitter
WU Jun-Jie1,2, LI Xiu1, ZHI Qing-Quan2, DENG Xiao-Hong2, ZHANG Jie2, WANG Xing-Chun2, YANG Yi2
1. School of Geological Engineering and Geomatics, Chang'an University, Xi'an 710054, China;
2. Institute of Geophysical and Geochemical Exploration, CAGS, Langfang 065000, China
全文: PDF(1875 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

地-井瞬变电磁法是在地面发射、井(钻孔)中接收的装置形式,能够利用已有钻孔使接收探头深入地下更加接近目标体,获得更加可靠的信息。该装置对于深部低阻体,尤其当存在低阻覆盖层、矿化等地质干扰情况下,对于规模不大的深部良导矿体的探测能力较强。相对于磁性发射源,电性发射源勘查范围更广,适合地形起伏矿区开展工作。本文旨在通过研究电性发射源条件下钻孔中地下电性界面的异常特征,为实际勘查工作的定性分析提供参考。文中通过一维模型正演模拟对三分量瞬变响应异常特征进行了初步分析,结果表明,由于瞬变响应总场中叠加了背景场和异常场的响应,曲线形态复杂,仅在中晚期道电界面反映明显;而异常场曲线形态相对简单,对电性界面反映明显;整体上水平分量的异常显示度高于垂直分量。通过数值模拟分析获得了对于电性源地-井TEM钻孔中三分量曲线形态的初步认识,验证了电性发射源条件下地-井TEM对于确定电性界面的有效性,能够为进一步研究提供参考。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
Abstract

Borehole TEM is a configuration in which the transmitter is on the ground and the receiver probe is in borehole. The receiver can be installed near the orebody through the borehole and hence can obtain more reliable information of the orebody. Borehole TEM is effective for conductive mineralization, particularly in areas where the capability of surface EM for defining a target is limited either by large depths or by interfering conductive bodies such as overburden shallow sulfides and peripheral mineralized horizons. Relative to the magnetic source, the detection depth of electric source borehole TEM is deeper and it is more suitable for deep prospecting in the complex terrain area. Through the study of the borehole TEM response characteristics of electrical source of borehole TEM, the authors aim to provide technical support for the application. Three component response characteristics of half space, 1D, 3D model were analyzed through forward modeling, and its validity for different models was proved in this paper. The results show that, due to the superimposition of the background field and anomaly field response upon transient response of total field, the curve shape is complex, and the electrical interfaces are only obviously reflected at the middle and late stage. The shape of the anomalous field curve is relatively simple, and the electrical interface is obvious; the anomaly of the horizontal component is on the whole higher than that of the vertical component. In this paper, by means of numerical simulation analysis, the authors obtained the preliminary understanding of electrical source of downhole TEM three component curve shape and verified the effectiveness of the electrical interface under the condition of the electrical emission sources. The results obtained by the authors can provide a reference for the further research.

收稿日期: 2016-06-15      出版日期: 2017-02-10
:  P631  
基金资助:

基础性公益性地质矿产调查专项(DD20160046);中央级公益性科研院所基本科研业务费专项(AS2015J09、AS2012P03)

通讯作者: 李貅(1958-),男,教授,博士生导师,主要从事瞬变电磁场的理论与应用方面的研究。Email:Lixiu@chd.edu.cn
作者简介: 武军杰(1979-),男,高级工程师,在读博士,主要从事瞬变电磁方法研究工作。Email:wujunjie@igge.cn
引用本文:   
武军杰, 李貅, 智庆全, 邓晓红, 张杰, 王兴春, 杨毅. 电性源地-井瞬变电磁异常场响应特征初步分析[J]. 物探与化探, 2017, 41(1): 129-135.
WU Jun-Jie, LI Xiu, ZHI Qing-Quan, DENG Xiao-Hong, ZHANG Jie, WANG Xing-Chun, YANG Yi. A preliminary analysis of anomalous TEM response characteristics in borehole with electric source transmitter. Geophysical and Geochemical Exploration, 2017, 41(1): 129-135.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2017.1.20      或      https://www.wutanyuhuatan.com/CN/Y2017/V41/I1/129

[1] Eadie T,Staltari G.Introduction to down hole electromagnetic methods[J].Exploration Geophysics,1987:247-351.
[2] Barnett C T.Simple inversion of time-domain electromagnetic data[J].Geophysics, 1984,49(7):925-933.
[3] Duncan A C. Interpretation of down-hole transient EM data using current filaments[C]//5th ASEG conference,1984:36-39.
[4] Lindsay, Thomas.A simple Interpretation aid for downhole time-domain electromagnetic anomalies[J].Exploration Geophysics,1987:349-351.
[5] Cull J P. Rotation and resolution of three-component DHEM data[J].Exploration Geophysics,1996, 27(3), 155-1159.
[6] Zhang Z,Xiao J.Inversions of surface and borehole data from large-looptransient electromagnetic system over a 1-D earth[J].Geophysics,2001,66(4):1090-1096.
[7] 孟庆鑫,潘和平. 地-井瞬变电磁响应特征数值模拟分析[J].地球物理学报,2012,55(3):1046-1053.
[8] 张杰,王兴春,邓晓红,等.地-井瞬变电磁井旁板状导体异常响应特征分析[J].物探化探计算技术,2014,36(6):641-648.
[9] 张杰,邓晓红,郭鑫,等.地-井TEM在危机矿山深部找矿中的应用实例[J].物探与化探,2013,37(1):30-34.
[10] 杨毅,邓晓红,张杰,等.一种井中瞬变电磁异常反演方法[J].物探与化探,2014,38(4):855-859.
[11] 薛国强,闫述,陈卫营.接地源短偏移瞬变电磁法研究展望[J]. 地球物理学进展,2014,29(1):177-181.
[12] 薛国强,陈卫营,周楠楠,等. 接地源瞬变电磁短偏移深部探测技术[J]. 地球物理学报,2013.56(1):255-261.
[13] 于生宝,贾少华,李刚,等.电性源时间域电磁法大功率发射系统的研制[J].国外电子测量技术,,2014,33(7):49-52.
[14] Strack K M.Exploration with deep transient electromagnetic method[M].Amsterdam:Elsevier,1992.
[15] Mogi T, Kusunoki K, Kaieda H, et al. Grounded electrical-source airborne transient electromagnetic (GREATEM) survey of Mount Bandai north-eastern Japan[J].Exploration Geophysics,2009,40:1-7.
[16] 陈卫营,薛国强,崔江伟. 电性源瞬变电磁发射源形变对观测结果影响分析[J]. 地球物理学进展,2015,30(1):0126-0132.
[17] Key K. 1D inversion of multicomponent, multifrequency marine CSEM data:Methodology and synthetic studies for resolving thin resistive layers[J]. Geophysics, 2009,74(2):F9-F20.
[18] 孙怀凤,李貅,李术才,等.考虑关断时间的回线源激发TEM三维时域有限差分正演[J].地球物理学报,2013,56(3):1049-1064.

[1] 陈秀娟, 刘之的, 刘宇羲, 柴慧强, 王勇. 致密储层孔隙结构研究综述[J]. 物探与化探, 2022, 46(1): 22-31.
[2] 肖关华, 张伟, 陈恒春, 卓武, 王艳君, 任丽莹. 浅层地震技术在济南地下空间探测中的应用[J]. 物探与化探, 2022, 46(1): 96-103.
[3] 石磊, 管耀, 冯进, 高慧, 邱欣卫, 阙晓铭. 基于多级次流动单元的砂砾岩储层分类渗透率评价方法——以陆丰油田古近系文昌组W53油藏为例[J]. 物探与化探, 2022, 46(1): 78-86.
[4] 陈大磊, 王润生, 贺春艳, 王珣, 尹召凯, 于嘉宾. 综合地球物理探测在深部空间结构中的应用——以胶东金矿集区为例[J]. 物探与化探, 2022, 46(1): 70-77.
[5] 周能, 邓可晴, 庄文英. 基于线性放电法的多道脉冲幅度分析器设计[J]. 物探与化探, 2022, 46(1): 221-228.
[6] 吴燕民, 彭正辉, 元勇虎, 朱今祥, 刘闯, 葛薇, 凌国平. 一种基于差分接收的电磁感应阵列探头的设计与实现[J]. 物探与化探, 2022, 46(1): 214-220.
[7] 王猛, 刘媛媛, 王大勇, 董根旺, 田亮, 黄金辉, 林曼曼. 无人机航磁测量在荒漠戈壁地区的应用效果分析[J]. 物探与化探, 2022, 46(1): 206-213.
[8] 张化鹏, 钱卫, 刘瑾, 武立林, 宋泽卓. 基于伪随机信号的磁电法渗漏模型试验[J]. 物探与化探, 2022, 46(1): 198-205.
[9] 张建智, 胡富杭, 刘海啸, 邢国章. 煤矿老窑采空区地—井TEM响应特征[J]. 物探与化探, 2022, 46(1): 191-197.
[10] 张宇哲, 孟麟, 王智. 基于Gmsh的起伏地形下井—地直流电法正演模拟[J]. 物探与化探, 2022, 46(1): 182-190.
[11] 马德志, 王炜, 金明霞, 王海昆, 张明强. 海上地震勘探斜缆采集中鬼波产生机理及压制效果分析[J]. 物探与化探, 2022, 46(1): 175-181.
[12] 张洁. 基于拉伸率的3DVSP道集切除技术及应用[J]. 物探与化探, 2022, 46(1): 169-174.
[13] 丁骁, 莫思特, 李碧雄, 黄华. 混凝土内部裂缝对电磁波传输特性参数的影响[J]. 物探与化探, 2022, 46(1): 160-168.
[14] 崔瑞康, 孙建孟, 刘行军, 文晓峰. 低阻页岩电阻率主控因素研究[J]. 物探与化探, 2022, 46(1): 150-159.
[15] 陈亮, 付立恒, 蔡冻, 李凡, 李振宇, 鲁恺. 基于模拟退火法的磁共振测深多源谐波噪声压制方法[J]. 物探与化探, 2022, 46(1): 141-149.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com