RESEARCH ON DETECTION RESOLUTION OF 3-D ANOMALY’S ATEM RESPONSE BY CENTRAL LOOP
TIAN Pei-pei1,2, FENG Xue1,2, GUAN Shan-shan1,2, WAN Ling1,2, YIN Bing-qi1,2, JI Yan-ju1,2
1. Key Laboratory of Earth Information Detection Instruments, Ministry of Education, Jilin University, Changchun 130026, China;
2. College of Instrumentation Science & Electrical Engineering, Jilin University, Changchun 130026, China
Airborne time-domain electromagnetic(ATEM)system has some advantages, such as high-speed, economy and deep-exploration depth. ATEM is one of effective methods to explore water resources and minerals. Study on the detection resolution of three-dimensional (3-D) geological body has great importance in ATEM detection in China. The article using finite-difference time-domain method (FDTD) and Central loop mode calculates the airborne electromagnetic response of 3-D typical geologic body. We had discussed the detection resolution of 3-D targets which were in different depth or electrical conductance. Combine with the reality operating parameters of ATEM system, and we calculated 3-D anomalous body of 70 m?70 m?70 m. Numerical calculation results indicate that, when the ratio of electrical conductance of abnormal and background is 200, the maximum range of detecting depth is 180 meters. When reasonable improve the magnification of the receiver front-end, you can effectively enhance the exploration depth. When anomalous body is buried 135m depth, can detect the minimum ratio of electrical conductivity of anomalous body and the surrounding rock is 1.5. Using ATEM methods to study 3-D anomalous body's resolution has great guiding significance of the theory in recognition of anomaly and precise processing for electromagnetic data interpretation.
[1] Jopie I Adhidjaja,Gerald W Hohmann, Michael L Oristaglio.Two-dimensional transient electromagnetic responses [J].Geophsics, 1985, 50(12):2849-2861.[2] Yee K S. Numerical solution of initial boundary value problems involving Maxwell equations in isotropic media[J].IEEE Trans, Antennas and Propagation, May 1966,AP-14(3):302-307.[3] Tsili Wang, Gerald W Hohmann. A finite-difference, time-domain solution for three-dimensional electromagnetic modeling[J]. Geophsics, 1993,58(6):797-809.[4] 闫述,陈明生,傅君眉.瞬变电磁场的直接时域数值分析[J].地球物理学报,2002,45(2):275-283.[5] 徐凯军,李桐林.时域瞬变场电磁场有限差分法[J].世界地质,2004,23(3):301-305.[6] 谭捍东,余钦范,John Booker,等.大地电磁法三维交错采样有限差分数值模拟[J]. 地球物理学报, 2003,46(5):705-711.[7] 宋维琪,仝兆歧.3D 瞬变电磁场的有限差分正演计算[J].石油地球物理勘探,2000,35(6):751-757.[8] 许洋铖,林君,李肃义,等.全波形时间域航空电磁响应三维有限差分数值计算[J].地球物理学报,2012,55(6):2105-2114.[9] 许洋铖.全波形时间域电磁接收系统及分辨率研究.吉林大学,2012.[10] 嵇艳鞠,栾卉,李肃义,等.全波形时间域航空电磁探测分辨率[J].吉林大学学报:地球科学版,2011,41(3):885-891.[11] 葛德彪,闫玉波.电磁波时域有限差分方法[M].西安:西安电子科技科技大学出版社,2002.[12] 米萨克 N 纳比吉安.勘查地球物理电磁法[M].赵经祥,译.北京:地质出版社,1992.[13] 李貅.瞬变电磁测深的理论与应用[M].西安:陕西科学技术出版社,2002.[14] 傅良魁.电法勘探教程[M].北京:地质出版社,1983.[15] 蒋邦远.实用近区磁源瞬变电磁法勘探[M].北京:地质出版社,1998.[16] Kong F N. Hankel transform filters for dipole antenna radiation in a conductive medium[J]. Geophysical Prospecting, 2007, 55:83-89.[17] Guptasarma D,Singh B. New digital linear filters for Hankel J0 and J1 transforms[J]. Geophysical Prospecting,1997, 45:745-762.[18] Grant, F.S., and West, G.F., Interpretation theory in applied geophysics[M]. McGraw-Hill Book Co, 1965.[19] Misac N Nabighian.Toward a three-dimensional automatic interpretation of potential field data via generalized Hilbert transforms: Fundamental relations[J].Geophysics.1984,VOL.49,NO.6;P780-786,3 FIGS.[20] 考夫曼 A,凯勒 G V.频率域和时间域电磁探测[M].王建谋,译.北京:地质出版社,1987.[21] 嵇艳鞠,林君,朱凯光,等.利用瞬变电磁技术进行地下水资源勘察[J].地球物理学进展,2005,20(3):828-833.