E-mail Alert Rss
 

物探与化探, 2025, 49(1): 229-238 doi: 10.11720/wtyht.2025.2341

生态地质调查

塔里木盆地北缘绿洲土壤碳储量及其碳密度的分布特征

阿地来·赛提尼亚孜,, 段星星,, 何峻岭, 王翠翠, 董越

中国地质调查局 乌鲁木齐自然资源综合调查中心, 新疆 乌鲁木齐 830057

Carbon stocks and carbon density distribution of soil in oases on the northern margin of the Tarim Basin

Adilai Saitiniyazi,, DUAN Xing-Xing,, HE Jun-Ling, WANG Cui-Cui, DONG Yue

Urumqi Comprehensive Survey Center on Natural Resources, China Geological Survey, Urumqi 830057, China

通讯作者: 段星星(1983-),男,高级工程师,主要从事地球化学调查和研究工作。Email:duanxx@loxmail.com

第一作者: 阿地来·赛提尼亚孜(1992-),女,助理工程师,硕士,主要从事生态地质调查及土壤碳循环研究工作。Email:1152725803@qq.com

责任编辑: 蒋实

收稿日期: 2023-08-4   修回日期: 2024-03-6  

基金资助: 新疆维吾尔自治区面上基金项目(2022D01A149)
中国地质调查局项目(ZD20208072)
中国地质调查局自然资源综合调查指挥中心科技创新项目(KC20220007)

Received: 2023-08-4   Revised: 2024-03-6  

摘要

土壤碳库是全球陆地碳库的重要组成部分,对土壤碳库的研究在全球碳循环和全球变化中具有重要意义。本文依据多目标区域地球化学调查获得的土壤碳数据,估算了塔里木盆地北缘绿洲土壤0~20 cm、0~100 cm和0~180 cm深度的土壤有机碳、无机碳密度及储量,并对碳密度空间分布特征进行了研究。结果表明:研究区不同土壤深度的碳库组成不同,土壤0~20 cm深度有机碳储量占总碳储量的20.66%,随深度的增加有机碳储量占比逐渐减少,但无机碳储量占比逐渐增加,0~180 cm深度无机碳所占比例为85.73%,土壤碳库组成以无机碳为主;3种土壤层次的有机碳密度分别为1 956.45 t/km2、7 913.37 t/km2和11 973.19 t/km2,无机碳密度分别为71 722.84 t/km2、37 605.54 t/km2和71 914.93 t/km2,各层土壤有机碳密度均低于全国平均水平。研究区不同统计单元土壤碳库构成也具有一定差异,各土壤类型、土地利用方式中,潮土、棕钙土、灌淤土和盐土的有机碳、无机碳密度较高,风沙土、灌漠土较低;耕地土壤有机碳和无机碳密度最高,未利用地和建设用地的土壤碳密度较低。各地貌间,起伏山地土壤有机碳密度最高,冲洪积平原无机碳密度相对较高;研究区土壤碳密度空间分布呈现焉耆盆地为有机碳密度高值区,喀什三角洲部分区域(西、南部局地及东部边缘)为有机碳密度中等水平区,阿克苏地区为无机碳密度高值区的特征。综上,在极端干旱背景下,塔里木盆地北缘绿洲具有较大的无机碳碳汇潜力,但土壤类型、土地利用方式、地貌景观等因素对土壤碳固存的影响较大。

关键词: 土壤碳密度; 土壤碳储量; 碳密度空间分布; 塔里木盆地北缘; 碳汇

Abstract

Soil carbon pools constitute a crucial part of global terrestrial carbon pools. Hence, investigating soil carbon pools is critical for understanding the global carbon cycle and changes. Based on the soil carbon data obtained from a multi-purpose regional geochemical survey, this study estimated the densities and stocks of organic and inorganic carbon of soil at depths ranging from 0 to 20 cm, 0 to 100 cm, and 0 to 180 cm in oases on the northern margin of the Tarim Basin. Moreover, it delved into the spatial distribution of carbon density. The results of this study are as follows: (1) The compositions of soil carbon pools varied with the soil depth in the study area. At depths ranging from 0 to 20 cm, the organic carbon stocks accounted for 20.66% of the total carbon stocks. With an increase in soil depth, the organic carbon stocks gradually decreased, while the inorganic carbon stocks gradually increased. At depths ranging from 0 to 180 cm, the inorganic carbon stocks represented 85.73% of the total, suggesting that inorganic carbon predominated in the compositions of soil carbon pools; (2) The soil in three depth ranges exhibited organic carbon densities of 1,956.45, 7,913.37, and 119,73.19 t/km2, which were all below the national average level, and inorganic carbon densities of 71,722.84, 37,605.54, and 71,914.93 t/km2; (3) The compositions of soil carbon pools varied somewhat across statistical units. In terms of soil types and land use types, the densities of organic and inorganic carbon were higher in fluvo-aquic soil, brown calcic soil, irrigation-silting soil, and solonchak but lower in aeolian sandy soil and irrigated desert soil. Cultivated land exhibited the highest densities of organic and inorganic carbon in the soil, whereas unused and construction land manifested the lowest carbon densities; (4) In terms of topography, undulating mountains manifested the highest soil organic carbon density, whereas alluvial-proluvial plains displayed relatively high inorganic carbon density; (5) The spatial distribution of soil carbon density in the study area was characterized by high organic carbon densities in the Yanqi Basin, medium organic carbon densities in part of Kashgar Delta (western and southern localities and eastern margin), and high inorganic carbon densities in the Aksu area. Overall, under the background of extreme drought, the oases on the northern margin of the Tarim Basin show high potential for inorganic carbon sink, with soil carbon sequestration significantly influenced by soil types, land use types, and geomorphologic landscapes.

Keywords: soil carbon density; soil carbon stock; spatial distribution of carbon density; northern margin of the Tarim Basin; carbon sink

PDF (4222KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

阿地来·赛提尼亚孜, 段星星, 何峻岭, 王翠翠, 董越. 塔里木盆地北缘绿洲土壤碳储量及其碳密度的分布特征[J]. 物探与化探, 2025, 49(1): 229-238 doi:10.11720/wtyht.2025.2341

Adilai Saitiniyazi, DUAN Xing-Xing, HE Jun-Ling, WANG Cui-Cui, DONG Yue. Carbon stocks and carbon density distribution of soil in oases on the northern margin of the Tarim Basin[J]. Geophysical and Geochemical Exploration, 2025, 49(1): 229-238 doi:10.11720/wtyht.2025.2341

0 引言

大气CO2浓度的持续上升而引起的全球气候变暖是当今各政府和学术界最关注的环境问题之一[1-2]。减少CO2的排放,增加碳汇以应对全球气候变化成为国际社会的焦点[3-4]。土壤作为陆地生态系统最大的碳库,其数倍于陆地生物碳库(约2.5倍)和大气碳库(约3倍),其碳库微小的变化就会对大气CO2浓度产生很大的影响。土壤碳库及其动态变化在全球碳循环过程中起着非常重要的作用[5-6],准确估算土壤碳储量及其碳密度对于评价土壤碳库在陆地生态系统碳循环以及全球气候变化中的作用有着重要意义。

土壤碳库分为有机碳库和无机碳库,有机碳的封存、分解与释放和无机碳的积累、淋失对全球碳循环和气候变化具有重要的作用[7-8]。其中,无机碳库主要存在于干旱和半干旱区土壤中,约占全球面积的41%[9]。我国干旱和半干旱区约占国土面积的21.7%和30.8%[10],特别是干旱区,土壤有机碳仅占陆地生态系统碳库的15.5%,但其无机碳储量在全国土壤碳库中占据着一定的比例。不少学者对干旱和半干旱区土壤碳储量开展了相关研究,先后估算了黄土高原西段表层(0~20 cm)有机碳储量、青藏高原冻土区碳储量、青海表层(0~20 cm)土壤有机碳密度、内蒙古中北部土壤碳库、陕西有机碳储量及密度等[10-14]。各研究结果表明,不同地区因受气候、地形地貌、土壤类型、植被特征等自然因素和土地利用等人为干扰的影响,使得在区域水平上土壤碳储量及其密度分布具有明显的空间异质性,但由于各地区数据来源、计算方法不同,难以进行对比分析。

新疆作为典型的干旱和半干旱区,其面积约占国土面积的1/6,是我国干旱区碳循环的重要组成部分,在区域土壤碳储量及碳循环中的作用不可忽视。已有的新疆土壤碳储量研究多以单个区县为研究区域,对单个生态系统如林地、农田和草地碳库等开展研究,多数集中在点位剖面上的观测[15-17],例如,陈园园等[18]评估了三工河流域绿洲盐碱土的无机碳碳汇,Yang等[19]估算了土地利用变化下的土壤碳储量,Xu等[20]对评估农田有机碳储量进行评估,但由于研究区尺度不一,数据来源、研究方法多样等因素,前人研究不能够全面地量化土壤碳储量及其碳密度分布特征,且缺少大量可靠样点数据对土壤碳储量进行估算研究。另外,碳密度空间分布受土壤类型、土地利用方式和地形地貌等因素的影响,但以往大量研究侧重于单一因素方面的分析,不能够充分预测研究区域碳密度分布特征。因此,本文以塔里木盆地北缘绿洲为研究区,以新疆绿洲区多目标地球化学调查的土壤碳实测数据为主要资料,对不同土壤类型、不同土地利用方式及地形地貌的有机碳和无机碳储量进行估算,分析其碳密度分布特征,旨在为补充和完善新疆干旱区土壤碳储量提供基础研究数据,建立新疆干旱地区土壤碳库,为研究干旱区土壤碳封存能力和区域碳循环提供科学参考。

1 材料与方法

1.1 研究区概况

研究区处于新疆塔里木盆地北缘绿洲(图1),地处天山山脉以南,地理位置37 °24 '~42 °1 ' N,75°12'~85 °5 ' E,行政上包括巴音郭勒蒙古自治州(简称巴州)、阿克苏地区、克孜勒苏柯尔克孜自治州(克州)和喀什地区等4个地区(州)。研究区为山地、平原和沙漠地貌构成的典型生态脆弱区,属温带极端大陆性气候,冬季漫长,夏季炎热干燥,春秋季短促而变化剧烈;区内常年干燥,年平均气温12.9 ℃,年温差较大,降水量小,年平均降水量89.0 mm;常年日照充足,年日照时数为2 658~4 440 h,年均蒸发量249 mm。受塔克拉玛干沙漠影响,该区域风沙天气频发,多年平均最大风速在17~35 m/s。植被以荒漠稀疏耐旱植物为主,如沙拐枣(Calligonum mongolicum)、柽柳(Tamarix chinensis)、胡杨(Populus euphratica)、骆驼刺(Alhagi camelorum)等。

图1

图1   研究区位置及采样点分布

Fig.1   Location of study area and distribution of sampling points


1.2 数据采集与处理

根据《多目标区域地球化学调查规范(1∶250 000)》(DZ/T 0258—2014)要求,采用双层网格布样方法获取土壤样品,采集工作于2016~2018年完成。其中表层土壤样品采集密度为1件/km2,用采样工具自上而下采集0~20 cm深度的土壤样品,且在布点附近100 m范围内采集3~5个分样点混合成1件样品,同时按照网格4 km2内采集样品均匀混合组合成1件分析样,部分节点1~3 km2组合1件分析样,共采集表层土壤分析样12 131件;深层土壤采样密度为4个/km2,采样深度150~200 cm,每16 km2内采集土样均匀混合组合成1件分析样,部分边界点4~12 km2组合成1件分析样,共采集深层土壤分析样3 033件。

采集时去除表层土壤腐殖质和杂质,利用土钻上下均匀取样,每件样品质量在1 kg左右。样品经过自然风干后,用木槌适量敲打至粉末状,破碎后用200目尼龙筛过筛,混匀后取300~400 g装入样品瓶备用。土壤样品在新疆矿产实验研究所完成测试。土壤全碳和有机碳分别采用红外光谱吸收法和重铬酸钾容量方法进行测定,其中有机碳实验测试在加热条件下,用过量的重铬酸钾—硫酸溶液氧化土壤有机碳,多余的重铬酸钾用硫酸亚铁铵标准溶液滴定,以样品和空白消耗重铬酸钾的差值计算出有机碳量;全碳采用高频炉灼烧—红外光谱吸收法测定,经105 ℃充分烘干的0.030 0 g样品在高频炉灼烧,用红外光谱吸收法测定碳。样品加工、测试和管理严格按多目标区域地球化学调查规范执行,检出险为0.1×10-6,分析精密度控制在10%~20%,准确度控制在0.10~0.12,分析报出率达到98%以上。

1.3 研究方法

土壤表层和深层数据按照最近距离原则进行空间连接,计算各点不同深度土壤有机碳密度,参考奚小环等[21]的土壤碳储量计算方法并加以修正。

土壤表层0~20 cm和深层150~180 cm全碳、有机碳、无机碳含量关系如下:

TC=TIC+TOC,

TC=TIC+TOC,

式中: TCTC分别代表表层和深层土壤全碳实测含量值(%);TICTIC分别代表表层和深层土壤无机碳含量(%);TOCTOC分别代表表层和深层土壤有机碳实测含量值(%)。

土壤表层0~20 cm的单位土壤有机碳含量(USCATOC,0~20)和无机碳含量(USCATIC,0~20)计算公式为:

USCATOC,0~20=SOCD0~20×4×103,
USCATIC,0~20=SICD0~20×4×103,

其中,

SOCD0~20=TOC×0.ρ×10,
SICD0~20=TIC×0.ρ×10,

式中:USCA单位为t;SOCD0~20SICD0~20分别为土壤表层0~20 cm的土壤有机碳和无机碳密度(t/km2);ρ为容重(t/m3);10为单位换算系数。

土壤全层0~180 cm的单位土壤有机碳含量(USCATOC,0~180)和无机碳含量(USCATIC,0~180)计算公式为:

USCATOC,0~180=SOCD0~180×4×103,
USCATIC,0~180=SICD0~180×4×103,

其中:

SOCD0~180= (TOC-TOC)×[(d1-d2)+d3×(lnd3-lnd2)]d3(lnd1-lnd2)+TOC×10,
SOCD0~180= (TIC-TIC)2×d2×ρ×10,

式中:USCA单位为t;SOCD0~180SICD0~180分别为全层有机碳和全层无机碳密度(t/km2);d1取表层土壤中间深度10 cm,d2取180 cm,d3取100 cm。

土壤中上层0~100 cm的单位土壤有机碳含量(USCATOC,0~100)和无机碳(USCATIC,0~100)含量计算公式为:

USCATOC,0~100=SOCD0-100×4×103,
USCATIC,0~100=SICD0-100×4×103,

其中,

SOCD0~100= (TOC-TOC)×(d1-d3)+d3×(lnd3-lnd2)d3(lnd1-lnd2)+TOC×d3×ρ×10,
SICD0~100= TOC+d3d2×TOC+d2-d3d2×TOC  ÷2×d3×ρ×10,

式中:USCA单位为t;SOCD0~100SICD0~100分别为中上层有机碳和无机碳密度(t/km2);d1d2d3分别取10 cm、180 cm和100 cm。

一定区域内土壤有机碳(无机碳)储量为该地区不同深度单位土壤有机碳(无机碳)含量之和,即

总有机碳(无机碳)储量 = i=1nUSCATOC(TIC),i,

式中:USCATOC(TIC),i为第i个统计单位土壤有机碳(无机碳)量(t/4 km2); n为土壤有机碳储量统计范围内单位土壤有机碳量加和个数。

2 结论与讨论

2.1 不同深度土壤碳密度及储量特征

根据上述公式计算,研究区3种土壤层位0~20 cm、0~100 cm和0~180 cm的碳密度和面积48 524 km2范围内的土壤碳储量统计见表1

表1   研究区不同深度土壤碳储量及密度

Table 1  Statistics of carbon storage and density in different depth of soil in study area

土壤深度/cm有机碳储
量/Mt
无机碳储
量/Mt
全碳储
量/Mt
有机碳占全
碳比例/%
无机碳占全
碳比例/%
有机碳密度/
(t·km-2)
无机碳密度/
(t·km-2)
全碳密度/
(t·km-2)
0~2078.26300.61378.8720.6679.341956.4571722.8473679.29
0~100316.531504.221820.7617.3882.627913.3737605.5445518.91
0~180478.932876.603355.5214.2785.7311973.1971914.9383888.12

注:1 Mt =1×106 t。

新窗口打开| 下载CSV


表1可知,3种不同土壤层位有机碳密度分别为1 956.45 t/km2、7 913.37 t/km2和11 973.19 t/km2,这与全国典型区域有机碳密度(3 186 t/km2、11 646 t/km2和15 339 t/km2)[22]相比,研究区各层位有机碳密度均处于偏低水平。各层位无机碳密度分别为71 722.84 t/km2、37 605.54 t/km2和71 914.93 t/km2,说明研究区土壤具有较大的无机碳碳汇潜力。

研究区表层0~20 cm有机碳储量占全层有机碳储量的16.34%,这与山东(21.39%)、四川(17.01%)、河北(21.30%)、安徽(27.49%)、吉林(23.74%)、内蒙古(35.56%)和西藏(57.00%)[23-26]等典型地区相比较为偏低水平; 0~100 cm深度土壤有机碳占全层的66.09%,表明有机碳主要集中在100 cm深度内,100~180 cm深度内有机碳储量有限,这与Zhang等[27]的结果相似,表明不同地质背景(成土母质、地形地貌)和气候因素下,土壤有机碳的输入也不相同。

从土壤全层看,无机碳储量远大于有机碳储量,约占有机碳储量的3~5倍以上。无机碳储量随土壤深度的增加,所占比例也逐渐增大,相应的有机碳占比却逐渐减少,土壤碳储量以无机碳为主。研究区表层0~20 cm无机碳储量是有机碳储量的4倍左右,全层0~180 cm无机碳储量是有机碳储量的5倍以上。这与Li[28]等的结果一致,即西北干旱区无机碳储量是有机碳储量的2~5倍。由于干旱区地表蒸发潜力大,有机碳矿化速率高,深层土壤中富含Ca2+,且大气吸收和土壤呼吸生成较多的CO2,从而造成有机碳的分解及碳酸盐形式存在的表层土壤无机碳的溶蚀,随水分的移动无机碳迁移至土壤深层积淀结晶[29-30]。另一方面,干旱区降水稀少,土壤含水量极低,利于动植物体的钙化作用及土壤有机碳向无机碳的转移。

2.2 不同土壤类型碳密度及储量特征

研究区不同土壤类型碳密度见图2。在不同土壤深度,各土壤类型的有机碳密度大小顺序一致。其中,有机碳密度较高的有沼泽土(0.24~1.37 t/km2)、棕钙土(0.23~1.38 t/km2)、灌淤土(0.20~1.19 t/km2)和潮土(0.19~1.12 t/km2),这4种土壤类型有机碳密度占全区有机碳密度的1.8~2倍;有机碳密度较低的有风沙土(0.10~0.70 t/km2)和棕漠土(0.14~0.86 t/km2)。沼泽土发育在河渠、湖泊、水库坑塘等周边区域,受人为干扰影响小,土壤中碳的保存较好;棕钙土表层腐殖质和有机质的积累不高,但深层土壤钙积作用强,利于无机碳的积累;潮土是重要的耕种土壤资源,但受长期耕作的影响,土壤局部有机碳质量分数降低;灌漠土、风沙土由于物质组成和成土原因,植被覆盖少、生物活动低,抑制了有机质的积累; 盐土土壤质地较为均匀,理化性质波动较小,地表植物稀疏,易发生次生盐渍化,抑制有机质的积累过程,不利于农作物的生长发育[15]。另外,受可溶性盐和成土母质的影响,盐土中的碳酸盐吸收、溶解大气和土壤的CO2,生成碳酸盐并附着在土壤颗粒上,随深度的增加通过土壤水入渗、沉淀转化为无机碳[31]

图2

图2   研究区各深度土壤有机碳、无机碳密度

Fig.2   Organic and inorganic carbon density of different soil types in study area


不同土壤深度的各土壤类型无机碳密度大于有机碳密度,无机碳密度是有机碳的3~5倍,其中无机碳密度较高的有潮土(3.50~6.68 t/km2)、棕钙土(3.38~6.87 t/km2)和盐土(3.11~6.21 t/km2),密度较低的有灌漠土(2.85~5.17 t/km2)和沼泽土(3.07~5.03 t/km2)。各土壤类型中,随土壤深度的增加,无机碳密度表现为先减少后增加,可能原因是干旱土壤表层中有机残体分解产生的碳参与了新沉积的方解石的形成,又因在土壤中层水分递减较快,方解石的结晶较为活跃,促进了有机碳的转移和无机碳的形成[32],导致随深度的增加无机碳先减少后增加。

表2可知,不同土壤深度,盐土、草甸土和潮土的有机碳储量占全区土壤有机碳储量的79.29%~79.86%,无机碳储量占全区无机碳储量的80.12%~80.80%,3种土壤类型的分布面积占全区面积的66.71%;而风沙土、棕钙土和灌漠土有机碳、无机碳储量占比小,三者有机碳、无机碳的占比之和小于5%,与之相应的分布面积也较小,仅占全区的5.65%。可以看出,不同土壤深度的有机碳、无机碳储量大小均表现出与其相应的土壤类型分布面积大小成正比,说明不同土壤类型的碳储量更多的受该土壤类型所占的面积所影响,而碳密度反映该土壤类型的固碳潜力[33-35],是碳长期累积效应。

表2   研究区不同土壤类型碳储量统计

Table 2  Carbon storage of different soil types in study area

土壤类型面积/km2占比/
%
表层土壤(0~20 cm)中上层土壤(0~100 cm)全层土壤(0~180 cm)
有机碳/Mt无机碳/Mt全碳/Mt有机碳/Mt无机碳/Mt全碳/Mt有机碳/Mt无机碳/Mt全碳/Mt
草甸土1002420.6214.9861.1376.1160.29304.56364.8592.75596.44689.20
潮土811216.6915.6056.8072.3961.70283.64345.3490.79540.07630.86
风沙土21964.522.2511.8114.069.5459.9869.5215.45118.27133.72
灌漠土1560.320.300.660.961.183.064.231.504.425.92
灌淤土585612.0511.6535.7047.3546.39176.21222.6069.24329.77399.01
盐土1429229.4020.1787.22107.3982.61444.67527.28129.67886.831016.50
沼泽土17243.554.0610.5014.5617.0752.9269.9923.6986.77110.46
棕钙土3920.810.912.813.723.6013.2616.865.4124.0929.50
棕漠土585612.058.3533.9842.3334.15165.93200.0950.41289.95340.36
总计48608100.0078.26300.61378.87316.501504.221820.76478.902876.603355.52

新窗口打开| 下载CSV


2.3 不同土地利用类型的碳密度及储量特征

土地利用类型的变化是陆地生态系统碳循环的主要驱动力之一,其不仅通过直接决定地表植被类型影响土壤有机碳的输入,而且还会引起土壤理化性质的变化,从而对土壤固碳能力产生影响[36]图3为草地、耕地、林地、建设用地、未利用地和水域等6种土地利用方式下的土壤有机碳、无机碳密度特征。不同土壤深度,耕地的有机碳、无机碳密度最高,其他类型土壤有机碳大小依次为:建设用地>水域>草地>林地;无机碳密度大小依次为林地>草地>水域>未利用地和建设用地。这与多数研究结果类似[20,37]。在长期耕作中,可以通过人为软化土壤,改善土壤结构和功能,使其结构和通气性好,同时采用秸秆还田、施用有机肥和保守耕作等方式,增加农作物产量,进而增加农作物根底分泌物和作物残渣对土壤有机碳的输入。此外,耕地受长期灌溉及地下水的运动,使得土壤具有丰富的Ca2+、Mg2+等,促进了次生碳酸盐的形成,并通过水分迁移,沉积于深层土壤中[38-39],积累无机碳。研究区林地多以人工林为主,种植年限较短且分布面积小,再之林地土壤呼吸作用强,加快了土壤有机碳分解速率[40],导致有机碳的积累小。建设用地的地面硬化面积大,同时绿化面积也在扩大且比较稳定,植被覆盖度较好,利于土壤有机碳的积累。

图3

图3   研究区不同土地利用下有机碳、无机碳密度

Fig.3   Organic and inorganic carbon density of different land use types in study area


表3碳储量可知, 耕地土壤有机碳、无机碳储量高,占总碳储量的一半以上,其面积占全区的58.57%;其次为草地,面积占全区的20.43%,且耕地与草地的有机碳、无机碳储量均占总储量的80%以上。尽管草地类型的碳密度较低,但分布面积大,相应的碳储量也相对较大;水域、建设用地等类型的土壤碳密度高,但分布面积小,随之碳储量也小,这与前人得到的研究结果较为一致[41]

表3   研究区不同土地利用下的碳储量

Table 3  Carbon storage of different land use types instudyarea

土地利
用类型
面积/km2占比/%表层土壤(0~20 cm)中上层土壤(0~100 cm)全层土壤(0~180 cm)
有机碳/Mt无机碳/Mt全碳/Mt有机碳/Mt无机碳/Mt全碳/Mt有机碳/Mt无机碳/Mt全碳/Mt
草地993220.4313.9158.2572.1557.68294.64352.3289.85571.76661.62
耕地2846858.5750.08182.01232.10199.95907.111107.05299.501739.02 038.50
林地16483.392.329.8812.29.3549.5858.9314.1996.35110.54
建设用地10122.082.026.708.727.9933.3341.3211.8363.2075.02
未利用地640813.187.9736.2144.1833.45181.87215.3251.32337.16388.48
水域11402.351.857.329.177.7036.5044.2011.6366.9178.54

新窗口打开| 下载CSV


2.4 不同地貌类型碳密度及储量特征

研究区各地貌类型中,不同土壤深度的有机碳密度以起伏山地为最高(0.19~1.13 t/km2),其次为黄土梁峁(0.19~1.05 t/km2)、冰水沉积平原(0.17~1.05 t/km2)、冲洪积平原(0.16~1.00 t/km2),密度较低的有丘陵(0.14~0.89 t/km2)和风积地貌(0.12~0.79 t/km2)。但土壤无机碳密度略有不同。无机碳密度较高的为冰水沉积平原(7.92~6.85 t/km2),其次是冲洪积平原(5.97~5.99 t/km2)、起伏山地(5.67~5.71 t/km2)、丘陵(5.28~5.38 t/km2)和黄土梁峁(5.31~5.35 t/km2),风积地貌密度最低(4.84~4.87 t/km2)(图4)。由于山地区域土壤受机械翻耕扰动较小,植被和微生物对有机碳输入较高[42];同时随海拔高度增加,气温及土壤温度降低,微生物对土壤有机质的分解减弱,从而促进土壤有机碳积累[43]。研究区冲洪积平原土壤碳酸盐含量高且地表蒸发强烈,使得深层土壤中可溶性盐类易积聚于土壤表层[44],促进次生碳酸盐的形成及无机碳的沉淀;平原区绿洲耕地面积大,土壤受翻耕扰动大,加快有机质分解速率的同时,灌溉淋溶后碳酸盐沉积,进而积累了较多的无机碳。

图4

图4   不同地形地貌类型下的碳密度

Fig.4   Carbon density of different land forms types in study area


表4可知,冲洪积平原土壤有机碳、无机碳储量最大,占90%以上(面积占全区88.83%)。风积地貌和黄土梁峁分布面积小,且成土母质中有机质不易保存且含量低,导致有机碳、无机碳储量所占比例小于1%。

表4   不同地貌类型下的碳储量

Table 4  Carbon storage of different land forms types in study area

地形地貌面积/km2占比/%表层土壤(0~20 cm)中上层土壤(0~100 cm)全层土壤(0~180 cm)
有机碳/Mt无机碳/Mt全碳/Mt有机碳/Mt无机碳/Mt全碳/Mt有机碳/Mt无机碳/Mt全碳/Mt
丘陵2122.261.154.755.904.7723.3328.107.4043.6951.09
黄土梁峁160.170.381.231.611.506.117.612.1811.0413.22
冲洪积平原833688.8369.54261.92331.46281.111311.791 592.90424.012502.632926.63
风积地貌6887.332.4910.3212.8010.3351.7762.1016.68102.77119.45
起伏山地800.850.581.882.462.329.3111.633.4316.8620.29
冰水沉积平原520.550.492.502.992.0211.6313.652.9518.7221.68

新窗口打开| 下载CSV


2.5 有机碳、无机碳密度空间分布特征

研究区不同土壤深度的有机碳和无机碳密度空间分布具有同一性特征(图5)。土壤有机碳密度高值区分布在中部、东部、西部边缘及西南部分区域,主要包括阿克苏地区、喀什地区、焉耆盆地及博斯腾湖周边区域。其中,焉耆盆地及博斯腾湖周边土壤表层土壤植被覆盖度高、养分丰富,利于有机质的积累,并且主要分布潮土、沼泽土、草甸土及棕漠土等土壤类型。阿克苏和喀什地区有机碳密度高值区主要在海拔较高的山区,且多以山前森林、天然草场等为主。

图5

图5   研究区不同深度土壤有机碳、无机碳密度空间分布

a、c、e—分别为表层、中上层和全层土壤有机碳密度分布;b、d、f—分别为表层、中上层和全层无机碳密度分布

Fig.5   Distribution of carbon organic and inorganic density in different depth of soil in study area

a, c, e—the distribution of organic carbon density in surface, pelagic and whole layer soil; b, d, f—the distribution of inorganic carbon density in surface, pelagic and whole layer soil


研究区无机碳密度总体上呈西、中部较高,东部较低的分布特征,其高值区以研究区中部阿克苏地区为主,其次是喀什三角洲北部和东南边缘地区,低值区以东部博湖县为主。阿克苏地区较高的无机碳密度与其土壤母质有关[45],该区土壤大多为碱性土壤,具有一定的酸碱缓冲能力,并且土壤深层存在钙层,富集较高的钙离子促进碳酸盐的形成,从而积累较多的无机碳。

3 结论

1)研究区3种不同深度0~20 cm、0~100 cm和0~180 cm的有机碳密度分别为1 956.45 t/km2、7 913.37 t/km2和11 973.19 t/km2,无机碳密度分别为71 722.84 t/km2、37 605.54 t/km2和71 914.93 t/km2,同全国典型地区有机碳密度相比,各层位有机碳密度均明显偏低,土壤碳库组成以无机碳为主。

2)从土壤类型看,沼泽土、棕钙土、灌淤土和潮土的有机碳密度高,风沙土和棕漠土的有机碳密度低,潮土、棕钙土和盐土的无机碳密度高,灌漠土和沼泽土无机碳密度低,研究区分布面积较大的盐土、草甸土和潮土的碳储量大,分布面积较小的风沙土、棕钙土和灌漠土的碳储量小;各土地利用类型中,耕地有机碳、无机碳密度及储量最高,占总储量的80%以上;不同地貌景观区,冲洪积平原分布面积相对较大,其有机碳、无机碳储量较高,二者占总储量的90%以上;说明土壤类型、土地利用方式及地形地貌等因素对土壤碳固存的影响较大。

3)土壤有机碳密度高值区分布在阿克苏地区、喀什地区、焉耆盆地及博斯腾湖周边区域。无机碳高值区以中部阿克苏地区为主,其次是喀什三角洲北部和东南边缘地区,低值区以东部博湖县为主。

参考文献

Gross A, Glaser B.

Meta-analysis on how manure application changes soil organic carbon storage

[J]. Scientific Reports, 2021, 11(1):5516.

DOI:10.1038/s41598-021-82739-7      PMID:33750809      [本文引用: 1]

Manure application to agricultural soils is widely considered as a source of nutrients and a method of maintaining levels of soil organic carbon (SOC) to mitigate climate change. At present, it is still unclear which factors are responsible for the SOC stock dynamics. Therefore, we analyzed the relationship between SOC stock changes and site characteristics, soil properties, experiment characteristics and manure characteristics. Overall, we included 101 studies with a total of 592 treatments. On average, the application of manure on agricultural soils increased SOC stocks by 35.4%, corresponding to 10.7 Mg ha. Manure applications in conventional tillage systems led to higher SOC stocks (+ 2.2 Mg ha) than applications under reduced tillage. Soil organic carbon increase upon manure application was higher in soils under non-tropical climate conditions (+ 2.7 Mg ha) compared to soils under sub-tropical climate. Larger SOC increases after manure application were achieved in intermediate and shallow topsoils (in 0-15 cm by 9.5 Mg ha and in 16-20 cm by 13.6 Mg ha), but SOC stocks were also increased in deeper soils (> 20 cm 4.6 Mg ha), regardless of the tillage intensity. The highest relative SOC increase (+ 48%) was achieved if the initial SOC was below 1% but the absolute SOC increased with increasing initial SOC. Clay soils showed higher SOC increase rates compared to sandy soils (+ 3.1 Mg ha). Acidic soils showed comparable relative effects but a higher stock difference than neutral (+ 5.1 Mg ha) and alkaline soils (+ 5.1 Mg ha). The application of farmyard-, cattle- and pig manure showed the highest SOC increases (50%, 32% and 41%, respectively), while green manure and straw showed only minor effects. If manure applications were combined with additional mineral fertilizer, the SOC increases were higher (+ 1.7 Mg ha) compared to manure alone. Higher applied amounts generally led to higher SOC stocks. However the annually applied amount is only important under conventional tillage, non-tropical climate conditions, and pH-neutral as well as SOC-rich or SOC-depleted soils and if no additional mineral fertilization is applied. Further studies should focus on the SOC dynamics under tropical climate conditions and factors influencing a potential carbon saturation. In both cases, the number of data was too small. For this reason, additional field studies should be conducted primarily in the tropics. On the other hand, long-term field trials should be re-assessed or newly established to specifically investigate potential saturation effects and long-term (> 20 years) fertilizer effects and carbon sequestration.

Zhu G F, Qiu D D, Zhang Z X, et al.

Land-use changes lead to a decrease in carbon storage in arid region,China

[J]. Ecological Indicators, 2021,127:107770.

[本文引用: 1]

Matthews H D, Zickfeld K, Koch A, et al.

Accounting for the climate benefit of temporary carbon storage in nature

[J]. Nature Communications, 2023, 14(1):5485.

DOI:10.1038/s41467-023-41242-5      PMID:37679349      [本文引用: 1]

Nature-based climate solutions can contribute to climate mitigation, but the vulnerability of land carbon to disturbances means that efforts to slow or reverse land carbon loss could result in only temporary storage. The challenge of accounting for temporary storage is a key barrier to the implementation of nature-based climate mitigation strategies. Here we offer a solution to this challenge using tonne-year accounting, which integrates the amount of carbon over the time that it remains in storage. We show that tonne-years of carbon storage are proportional to degree-years of avoided warming, and that a physically based tonne-year accounting metric could effectively quantify and track the climate benefit of temporary carbon storage. If the world can sustain an increasing number of tonne-years alongside rapid fossil fuel CO emissions reductions, then the resulting carbon storage (even if only temporary) would have considerable and lasting climate value by lowering the global temperature peak.© 2023. Springer Nature Limited.

Lane J, Greig C, Garnett A.

Uncertain storage prospects create a conundrum for carbon capture and storage ambitions

[J]. Nature Climate Change, 2021, 11(11):925-936.

[本文引用: 1]

Batjes N H.

Total carbon and nitrogen in the soils of the world

[J]. European Journal of Soil Science, 1996, 47(2):151-163.

[本文引用: 1]

Hartley I P, Hill T C, Chadburn S E, et al.

Temperature effects on carbon storage are controlled by soil stabilisation capacities

[J]. Nature Communications, 2021,12:6713.

[本文引用: 1]

Basher L, Betts H, Lynn I, et al.

A preliminary assessment of the impact of landslide,earthflow,and gully erosion on soil carbon stocks in New Zealand

[J]. Geomorphology, 2018,307:93-106.

[本文引用: 1]

Yang P P, Shu Q, Liu Q, et al.

Distribution and factors influencing organic and inorganic carbon in surface sediments of tidal flats in northern Jiangsu,China

[J]. Ecological Indicators, 2021,126:107633.

[本文引用: 1]

Ferdush J, Paul V.

A review on the possible factors influencing soil inorganic carbon under elevated CO2

[J]. Catena, 2021,204:105434.

[本文引用: 1]

杨忠芳, 夏学齐, 余涛, .

内蒙古中北部土壤碳库构成及其影响因素

[J]. 地学前缘, 2011, 18(6):1-10.

[本文引用: 2]

采用网格采样法获取内蒙古中北部半干旱区土壤样品共527件,分析其碳库构成特征及其影响因素,并初步评估了未来气候变化背景下的碳库变化趋势。结果表明,研究区土壤碳库仍以有机碳为主,不同土壤类型中有机碳占总碳61%~97%,其中沼泽土有机碳密度最高,风沙土最低,盐土无机碳密度最高,暗棕壤最低;在空间分布上,土壤碳受气温和降水影响明显,其中有机碳随年平均气温升高而降低,随年降水增加而增加。而无机碳则相反,随年平均气温升高而升高,随年降水量的增加而降低。根据《IPCC2007报告》对21世纪末预测的气温和降水变化幅度估算,结果表明该区土壤碳库受气候变化的影响综合表现为碳密度的降低,平均幅度约为1.22 kg/m2。

Yang Z F, Xia X Q, Yu T, et al.

Soil carbon pool in the northeast Inner Mongolia and its influencing factors

[J]. Earth Science Frontiers, 2011, 18(6):1-10.

[本文引用: 2]

李春亮, 王翔, 张炜, .

黄土高原西段表层土壤有机碳储量及时空变化规律

[J]. 现代地质, 2022, 36(2):655-661.

[本文引用: 1]

Li C L, Wang X, Zhang W, et al.

Topsoil organic carbon storage and its spatial and temporal variation in the western Loess Plateau

[J]. Geoscience, 2022, 36(2):655-661.

[本文引用: 1]

王荔, 曾辉, 张扬建, .

青藏高原土壤碳储量及其影响因素研究进展

[J]. 生态学杂志, 2019, 38(11):3506-3515.

[本文引用: 1]

青藏高原是全球变化的敏感区,也是泛第三极地区气候变化的启动区。青藏高原土壤碳作为生态系统碳库的重要组成部分,对生态系统碳循环过程具有非常重要的作用。目前,对青藏高原土壤碳储量的估算仍存在很大的不确定性。为此,本文综述了近30年来关于青藏高原土壤碳储量研究,比较不同研究的土壤碳储量估算结果,以固有因子和变化因子两类影响因素作为切入点,分析了土壤碳储量时空分异规律。从估算模型和方法看,CENTURY和TEM模型综合考虑了影响土壤碳储量的多种机理过程,结果可信度高于EVI、NDVI模型以及插值估算法。青藏高原草地土壤表层(0~20 cm)有机碳储量约10 Pg C(1 Pg=10<sup>15</sup> g)。高原冻土区土壤有机碳储量(0~200 cm)约16.5 Pg C,土壤无机碳储量(0~100 cm)约14 Pg C。青藏高原土壤碳储量沿东南向西北方向逐渐降低,而关于变化因子对青藏高原土壤碳储量的作用规律还没有一致的认识。此外,采样点选择、数据源选择、估算深度以及估算方法等影响了青藏高原土壤碳储量估算结果的精确性。未来青藏高原土壤碳储量研究应建立土壤碳储量估算标准来提高结果的可比性;同时增大采样区、采样量以及采样深度并保障采样周期的时间连贯性等,有效减少土壤碳储量估算不确定性。以期更好地理解和预测未来青藏高原生态系统对气候变化的响应。

Wang L, Zeng H, Zhang Y J, et al.

A review of research on soil carbon storage and its influencing factors in the Tibetan Plateau

[J]. Chinese Journal of Ecology, 2019, 38(11):3506-3515.

[本文引用: 1]

The Tibetan Plateau is highly sensitive to global climate change, and is the controller for regional climate in the Pan-Third Pole region. On the Tibetan Plateau, soil carbon accounts for a high proportion of the ecosystem carbon and is extremely important for ecosystem carbon cycling. However, there are still plenty of uncertainties for current soil carbon storage estimation on the Tibetan Plateau, with different estimation methods also having great discrepancies. Here, we reviewed research progress on soil carbon storage on the Tibetan Plateau during the past 30 years, and compared the results of different studies. We also analyzed the spatial and temporal variation of soil carbon storage based on two kinds of influencing factors (inherent, such as geographical factor, soil property, vegetation type; and variable, such as climate change, human activities). In terms of estimation models and methods, the process models such as CENTURY and TEM, which consider multiple processes affecting soil carbon storage, had higher accuracy compared with the EVI and NDVI models, and interpolation estimation. Averaged across different studies, soil organic carbon storage in the top 20 cm of the alpine grasslands is about 10 Pg C (1 Pg=10<sup>15</sup> g), and that in the top 200 cm of the alpine permafrost is approximately 16.5 Pg C. Soil inorganic carbon storage in the top 100 cm of the alpine grassland is about 14 Pg C. The soil carbon storage on the Tibetan Plateau decreases gradually from southeast to northwest. The effects of variable factors on soil carbon storage varied greatly. The estimation accuracy of soil carbon storage is affected by sampling location, data source type, estimation method, and soil depth. Future studies of soil carbon storage on the Tibetan Plateau should pay attention to establishing a common standard for soil carbon storage estimation. Under the common standard, the comparability among different studies is boosted. Meanwhile, expanding sampling area and sample size, increasing sampling depth and maintaining the temporal coherence among each sampling period can efficiently abate uncertainty in soil carbon storage estimation on the Tibetan Plateau. With these improvements, our understanding on Tibetan Plateau ecosystem responses to climate change would be advanced and our prediction on its future status be more accurate.

刘庆宇, 马瑛, 程莉, .

青海东部表层土壤有机碳密度及其空间分布特征

[J]. 物探与化探, 2023, 47(4):1098-1108.

[本文引用: 1]

Liu Q Y, Ma Y, Cheng L, et al.

Density and spatial distribution of organic carbon in the topsoil of eastern Qinghai

[J]. Geophysical and Geochemical Exploration, 2023, 47(4):1098-1108.

[本文引用: 1]

刘京, 常庆瑞, 陈涛, .

陕西省土壤有机碳密度空间分布及储量估算

[J]. 土壤通报, 2012, 43(3):656-661.

[本文引用: 1]

Liu J, Chang Q R, Chen T, et al.

Spatial distribution characteristics and estimation of soil organic carbon density and storage in Shanxi Province,in China

[J]. Chinese Journal of Soil Science, 2012, 43(3):656-661.

[本文引用: 1]

陈新, 贡璐, 李杨梅, .

典型绿洲不同土壤类型有机碳含量及其稳定碳同位素分布特征

[J]. 环境科学, 2018, 39(10):4735-4743.

[本文引用: 2]

Chen X, Gong L, Li Y M, et al.

Spatial variation of soil organic carbon and stable isotopes in different soil types of a typical oasis

[J]. Environmental Science, 2018, 39(10):4735-4743.

[本文引用: 2]

向姣, 王著峰, 王玉刚, .

长期不同施肥对新疆荒漠农田土壤碳含量及其剖面分布的影响

[J]. 水土保持学报, 2022, 36(4):333-341.

[本文引用: 1]

Xiang J, Wang Z F, Wang Y G, et al.

Effects of long-term different fertilizations on soil carbon content and profile distribution in desert cropland in Xinjiang

[J]. Journal of Soil and Water Conservation, 2022, 36(4):333-341.

[本文引用: 1]

Xiang J, Wang Z F, Wang Y G et al.

Effects of long-term different fertiliazations on soil carbon content and profile distribution in desert cropland in Xinjiang

[J]. Journal of Soil and Water Conservation, 2022, 4(36):333-341.

[本文引用: 1]

陈园园, 冯文婷, 孔璐, .

内陆河流域土地利用对土壤无机碳的影响

[J]. 生态学杂志, 2019, 38(10):3042-3049.

[本文引用: 1]

盐碱土碳循环在缓解气候变化的贡献与作用等方面受到广泛关注,土地利用是影响干旱区土壤碳动态的主要要素,认识其对土壤碳的影响过程,有助于评估盐碱土的碳汇作用。本研究以三工河流域绿洲为对象,通过野外定点采样结合室内分析,探讨了土地利用对土壤无机碳(SIC)的影响。结果表明:整个研究区SIC含量均值为4.81 g&middot;kg<sup>-1</sup>,其中人工林地和耕地的SIC均值低于4.61 g&middot;kg<sup>-1</sup>,超过30%耕地与人工林地样点集中分布在小于4 g&middot;kg<sup>-1</sup>的区域,而其他土地利用类型均高于5 g&middot;kg<sup>-1</sup>,其70%以上的样点集中分布在大于4 g&middot;kg<sup>-1</sup>区域,由于人为活动的影响,自然景观SIC含量明显高于灌溉景观;流域中上部SIC含量明显低于流域下部(P&lt;0.05),随地貌单元变化,SIC含量呈现为冲洪积扇中上部&lt;冲洪积平原上部&lt;冲洪积平原下部&lt;地下水溢出带;土壤SIC储量为盐碱地&lt;灌木林地&lt;草地&lt;人工林地&lt;耕地,其中,盐碱地SIC储量最小(仅1.17 kg&middot;m<sup>-2</sup>),耕地SIC储量最大(1.44 kg&middot;m<sup>-2</sup>)。表层土壤SIC储量受区域土地利用作用影响明显,灌溉景观土壤SIC储量高于自然景观;方差、多元线性和逐步回归分析表明,各因素对SIC含量变化影响明显,其程度大小为地貌单元&gt;土地利用类型&gt;电导率&gt;作物类型。

Chen Y Y, Feng W T, Kong L, et al.

Effects of land use on soil inorganic carbon in an inland basin

[J]. Chinese Journal of Ecology, 2019, 38(10):3042-3049.

[本文引用: 1]

Yang Y H, Chen Y N, Li Z, et al.

Land-use/cover conversion affects soil organic-carbon stocks:A case study along the main channel of the Tarim River,China

[J]. PLoS One, 2018, 13(11):e0206903.

[本文引用: 1]

Xu E Q, Zhang H Q, Xu Y M.

Exploring land reclamation history:Soil organic carbon sequestration due to dramatic oasis agriculture expansion in arid region of Northwest China

[J]. Ecological Indicators, 2020,108:105746.

[本文引用: 2]

奚小环, 张建新, 廖启林, .

多目标区域地球化学调查与土壤碳储量问题——以江苏、湖南、四川、吉林、内蒙古为例

[J]. 第四纪研究, 2008, 28(1):58-67.

[本文引用: 1]

Xi X H, Zhang J X, Liao Q L, et al.

Multi-purpose regional geochemical survey and soil carbon reserves problem:Examples of Jiangsu,Henan,Sichuan,Jilin Provinces and Inner Mongolia

[J]. Quaternary Sciences, 2008, 28(1):58-67.

[本文引用: 1]

奚小环, 杨忠芳, 廖启林, .

中国典型地区土壤碳储量研究

[J]. 第四纪研究, 2010, 30(3):573-583.

[本文引用: 1]

Xi X H, Yang Z F, Liao Q L, et al.

Soil organic carbon storage in typical regions of China

[J]. Quaternary Sciences, 2010, 30(3):573-583.

[本文引用: 1]

代杰瑞, 喻超, 张杰, .

山东半岛蓝色经济区土壤有机碳储量及固碳潜力分析

[J]. 吉林大学学报:地球科学版, 2014, 44(5):1659-1668.

[本文引用: 1]

Dai J R, Yu C, Zhang J, et al.

Analysis on soil organic carbon storage and the potential for carbon sequestration in the blue economic zone of Shandong peninsula

[J]. Journal of Jilin University:Earth Science Edition, 2014, 44(5):1659-1668.

[本文引用: 1]

陈富荣, 梁红霞, 邢润华, .

安徽省土壤固碳潜力及有机碳汇(源)研究

[J]. 土壤通报, 2017, 48(4):843-851.

[本文引用: 1]

Chen F R, Liang H X, Xing R H, et al.

Soil carbon sequestration potential and organic carbon sink/source in Anhui Province

[J]. Chinese Journal of Soil Science, 2017, 48(4):843-851.

[本文引用: 1]

廖艳, 孙淑梅, 杨忠芳, .

吉林中西部地区土壤有机碳储量及其时空变化特征

[J]. 第四纪研究, 2011, 31(1):189-198.

[本文引用: 1]

Liao Y, Sun S M, Yang Z F, et al.

Soil organic carbon storage and its spatial-temporal variation in the central and western area of Jilin

[J]. Quaternary Sciences, 2011, 31(1):189-198.

[本文引用: 1]

傅野思, 夏学齐, 杨忠芳, .

内蒙古自治区土壤有机碳库储量及分布特征

[J]. 现代地质, 2012, 26(5):886-895.

[本文引用: 1]

根据内蒙古自治区土壤资料中共461个土壤剖面数据估算表层及全剖面的土壤有机碳密度(SOCD)和储量(SOCR),绘制其SOCD的空间分布图,并对其影响因素进行了探讨。结果表明:内蒙古地区的表层SOCD为0.63~15.93 kg&middot;m<sup>-2</sup>,平均为3.68 kg&middot;m<sup>-2</sup>;全剖面SOCD为0.22~68.77 kg&middot;m<sup>-2</sup>,平均为10.35 kg&middot;m<sup>-2</sup>,不同土壤类型之间有一定差异。内蒙古表层SOCR为4.10 Pg,而全剖面储量为1079 Pg。土壤有机碳含量及分布受气候、土壤性质和人为活动的影响明显。最后,根据年均温与土壤有机碳密度的相关关系,估算得出当气温升高1 ℃,内蒙古地区土壤有机碳的释放量为0.91 Pg。

Fu Y S, Xia X Q, Yang Z F, et al.

Storage and distribution of soil organic carbon in Inner Mongolia

[J]. Geoscience, 2012, 26(5):886-895.

[本文引用: 1]

Zhang F, Wang X J, Guo T W, et al.

Soil organic and inorganic carbon in the loess profiles of Lanzhou area:Implications of deep soils

[J]. CATENA, 2015,126:68-74.

[本文引用: 1]

Li Y, Wang Y G, Houghton R A, et al.

Hidden carbon sink beneath desert

[J]. Geophysical Research Letters, 2015, 42(14):5880-5887.

[本文引用: 1]

苏培玺, 王秀君, 解婷婷, .

干旱区荒漠无机固碳能力及土壤碳同化途径

[J]. 科学通报, 2018, 63(8):755-765.

[本文引用: 1]

Su P X, Wang X J, Xie T T, et al.

Inorganic carbon sequestration capacity and soil carbon assimilation pathway of deserts in arid region

[J]. Chinese Science Bulletin, 2018, 63(8):755-765.

[本文引用: 1]

李畅, 杨忠芳, 余涛, .

干旱区土壤无机碳碳汇作用及其对固碳减排贡献研究进展

[J] .中国地质, 2023, 51(4):1210-1242.

[本文引用: 1]

Li C, Yang Z F, Yu T, et al.

Carbon sink of soil inorganic carbon in arid regions and its contribution to carbon sequestration and emission reduction:A review

[J]. Geology in China, 2023, 51(4):1210-1242.

[本文引用: 1]

彭康, 张飞飞, 邵志东, .

新疆奇台绿洲不同耕作年限荒漠灰钙土无机碳变化及其影响因素

[J]. 农业环境科学学报, 2024, 43(1):91-101.

[本文引用: 1]

Peng K, Zhang F F, Shao Z D, et al.

Variation and influencing factors of desert-sierozem soil inorganic carbon in different tillage years in the Qitai Oasis,Xinjiang,China

[J]. Journal of Agro-Environment Science, 2024, 43(1):91-101.

[本文引用: 1]

Peng K, Zhang F F, Shao Z D, et al.

Variation and influencing factors of desert-sierozem soil inorganic carbon in different tillage years in the Qitai Oasis,Xinjiang,China

[J]. Journal of Agro-Environment Science, 2024, 43(1):91-101.

[本文引用: 1]

张林, 孙向阳, 曹吉鑫, .

荒漠草原碳酸盐岩土壤有机碳向无机碳酸盐的转移

[J]. 干旱区地理, 2010, 33(5):732-739.

[本文引用: 1]

Zhang L, Sun X Y, Cao J X, et al.

Transfer of soil organic carbon to soil inorganic carbon in carbonate rock soil of desert grassland

[J]. Arid Land Geography, 2010, 33(5):732-739.

[本文引用: 1]

Li Y, Wang Y G, Houghton R A, et al.

Hidden carbon sink beneath desert

[J]. Geophysical Research Letters, 2015, 42(14):5880-5887.

[本文引用: 1]

王诚煜, 李玉超, 关旭, .

辽宁西部沿海地区土壤碳库构成及变化规律研究

[J]. 地质与资源, 2021, 30(2):173-185,135.

[本文引用: 1]

Wang C Y, Li Y C, Guan X, et al.

Compositions and variation rule of soil carbon pool in the coastal area of western Liaoning Province

[J]. Geology and Resources, 2021, 30(2):173-185,135.

[本文引用: 1]

Yang Y S, Xie J S, Sheng H, et al.

The impact of land use/cover change on storage and quality of soil organic carbon in midsubtropical mountainous area of Southern China

[J]. Journal of Geographical Sciences, 2009, 19(1):49-57.

DOI:10.1007/s11442-009-0049-5      [本文引用: 1]

<p>Land use/cover change (LUCC) is widely recognized as one of the most important driving forces of global carbon cycles. The influence of converting native forest into plantations, secondary forest, orchard and arable land on stores and quality of soil organic carbon (SOC) was investigated in mid-subtropical mountainous area of southern China. The results showed that LUCC had led to great decreases in SOC stocks and quality. Considerable SOC and light-fraction organic carbon (LFOC) had been stored in the native forest (142.2 t hm<sup>?2</sup> and 14.8 t hm<sup>?2</sup> respectively). When the native forest was converted to plantations, secondary forest, orchard and arable land, the SOC stocks decreased by 25.6%, 28.7%, 38.0%, 31.8% and 51.2%, respectively. The LFOC stocks decreased by 52.2% to 57.2% when the native forest was converted to woodland plantations and secondary forest, and by 82.1% to 84.2% when converted to economic plantation, orchard and arable land. After the conversion, the ratios of LFOC to SOC (0&ndash;60 cm) decreased from 13.3% to about 3.0% to 10.7%. The SOC and LFOC stored at the upper 20 cm were more sensitive to LUCC when compared to the subsurface soil layer. Also, the decline in carbon storage induced by LUCC was greater than the global average level, it could be explained by the vulnerable natural environment and special human management practices. Thus, it is wise to enhance soil carbon sequestration, mitigate elevated atmospheric co<sub>2</sub> and develop ecological services by protecting vulnerable environment, restoring vegetation coverage, and afforesting in mountainous area in mid-subtropics.</p>

赵晶晶, 贡璐, 安申群, .

塔里木盆地北缘绿洲不同连作年限棉田土壤有机碳、无机碳含量与环境因子的相关性

[J]. 环境科学, 2018, 39(7):3373-3381.

[本文引用: 1]

Zhao J J, Gong L, An S Q, et al.

Correlation between soil organic and inorganic carbon and environmental factors in cotton fields in different continuous cropping years in the oasis of the northern Tarim Basin

[J]. Environmental Science, 2018, 39(7):3373-3381.

[本文引用: 1]

郭洋, 李香兰, 王秀君, .

干旱半干旱区农田土壤碳垂直剖面分布特征研究

[J]. 土壤学报, 2016, 53(6):1433-1443.

[本文引用: 1]

Guo Y, Li X L, Wang X J, et al.

Proifledistribution of soil inorganic and organic carbon in farmland in arid and semi-arid areas of China

[J]. Acta Pedologica Sinica, 2016, 53(6):1433-1443.

[本文引用: 1]

Zondervan J R, Hilton R G, Dellinger M, et al.

Rock organic carbon oxidation CO2 release offsets silicate weathering sink

[J]. Nature, 2023, 623(7986):329-333.

[本文引用: 1]

谢娜, 冯备战, 李春亮.

不同土地利用方式土壤有机碳变化特征及与重金属的相关性分析

[J]. 中国农学通报, 2019, 35(26):115-120.

DOI:10.11924/j.issn.1000-6850.casb19030032      [本文引用: 1]

研究旨在探讨土地利用方式对土壤碳库储量的影响,以及不同土地利用方式土壤典型重金属与SOC储量之间的关系。采用现场分层采样(表、中、深层)及室内计算分析,调查了甘肃中西部12 个市县区,不同土地利用方式下土壤有机碳(SOC)储量变化特征,同时通过引入有机碳丰度值和相关系数,初步阐明了土壤重金属与SOC变化之间的相关性。结果得出:调查区内土壤有机碳丰度值呈现出的大小顺序为林地、建设用地、园地、耕地和草地;此外,典型土壤重金属Hg、Cd、Cr、As、Pb 与SOC储量之间存在显著相关性,园地和建设用地最高r=0.99,林地和耕地次之,分别为r=0.87 和r=0.86。可见,土壤在不同开发利用方式下,有机碳储量及有机碳丰度值呈现出较大差异性,同时也定量证明了SOC与土壤典型重金属储量密切相关。

Xie N, Feng B Z, Li C L.

Softorganic carbon under different land use patterns:Change characteristics and its correlation with softheavy metals

[J]. Chinese Agricultural Science Bulletin, 2019, 35(26):115-120.

[本文引用: 1]

Li J, Wen Y C, Li X H, et al.

Soil labile organic carbon fractions and soil organic carbon stocks as affected by long-term organic and mineral fertilization regimes in the North China Plain

[J]. Soil and Tillage Research, 2018,175:281-290.

[本文引用: 1]

姚春彦, 马东升, 丁海峰, .

新疆阿克苏地区早寒武世碳酸盐岩沉积环境:微量元素和碳同位素证据

[J]. 地球化学, 2011, 40 (1):63-71.

[本文引用: 1]

Yao C Y, Ma D S, Ding H F, et al.

Reconstruction of the Early Cambrian carbonate sedimentary environment in akesu area of Xinjiang,China:Evidence from trace elemnrts and carbon isotope excursion

[J]. Ceochemica, 2011, 40 (1):63-71.

[本文引用: 1]

Cillis D, Maestrini B, Pezzuolo A, et al.

Modeling soil organic carbon and carbon dioxide emissions in different tillage systems supported by precision agriculture technologies under current climatic conditions

[J]. Soil and Tillage Research, 2018,183:51-59.

[本文引用: 1]

孔祥斌, 胡莹洁, 李月, .

北京市耕地表层土壤有机碳分布及其影响因素

[J]. 资源科学, 2019, 41(12):2307-2315.

DOI:10.18402/resci.2019.12.14      [本文引用: 1]

土壤有机碳既是影响全球气候变化的生态因子,也是影响耕地质量的肥力因子,研究耕地土壤有机碳分布特征及其影响因素对增加耕地碳储量和提升耕地生产能力具有重要指导意义。本文以北京市为研究区,以第二次土壤普查的土壤类型及质地数据、2010年测土配方施肥项目土壤养分调查成果、数字高程模型(DEM)及耕地种植类型分布图为基础数据,分析区域耕地土壤有机碳密度及储量空间分布特征。结果表明:①2010年北京市耕地表层土壤平均有机碳密度为22.51 t/hm <sup>2</sup>,碳储量为990.34×10 <sup>4</sup> t;②北京市西北部山区以及城市近郊区耕地碳密度较大,各区县中耕地表层土壤平均有机碳密度最大的是门头沟区,达39.93 t/hm <sup>2</sup>;③地形、土壤类型、土壤质地及种植类型对耕地土壤有机碳密度均有影响,具随着海拔升高耕地土壤有机碳密度整体呈增加趋势;土壤类型为棕壤、褐土的耕地有机碳密度显著高于其他类型,整体表现出土壤质地越黏重土壤有机碳密度越大的趋势;利用方式为非粮作物的耕地土壤有机碳密度略高于粮食作物;④综合分析表明,在中山、低山区域春玉米土壤碳密度最高,而在丘陵、平原区则是露天菜、设施农业碳密度最高。当前北京市耕地利用调整应综合考虑当地地貌地形、土壤条件以及人为利用因素对耕地表层土壤有机碳的影响,因地制宜提高或保持耕地固碳能力。

Kong X B, Hu Y J, Li Y, et al.

Distribution and influencing factors of soil organic carbon of cultivated land topsoil in Beijing

[J]. Resources Science, 2019, 41(12):2307-2315.

DOI:10.18402/resci.2019.12.14      [本文引用: 1]

Soil organic carbon (SOC) is an ecological factor as well a typical fertility factor. The study of distribution characteristics and influencing factors of SOC are of great significance for enhancing the cultivated land production capacity and soil carbon storage. Based on agricultural soil sampling data, land use map, digital elevation model (DEM), and cultivated land type distribution map in 2010 and using the zonal statistic function of ArcGIS 10.0 software, we analyzed the spatial distribution feature of SOC density and the influence of natural and human factors in Beijing. The results are as follows: (1) In 2010, the average SOC density of the cultivated land in Beijing was 22.51 t/hm 2 and the carbon storage was 990.34×10 4 t; (2) The SOC densities of cultivated land topsoil in the northwestern mountainous areas and suburban areas were higher than the other areas in Beijing. The average SOC density in the surface soil in Mentougou District was the highest among all the 16 districts, reaching 39.93 t/hm 2 ; (3) Topography, soil type, soil texture, and planting type had significant effects on SOC density, The organic carbon density of cultivated topsoil generally increased with altitude; The SOC density of brown soil and cinnamon soil is higher than the other soil types, and the SOC density of cultivated topsoil generally increased with the clay content; The cultivated SOC density of cash crops is slightly higher than that of grain crops; (4) The comprehensive analysis showed that the SOC density of spring maize was the highest in middle and low mountain areas, while the open-air vegetable and facility agriculture fields had the highest SOC densities in hills and plain areas. The adjustment of cultivated land use in Beijing should consider the influence of topography, soil condition, and human factors on the SOC content of cultivated land, and the carbon sequestration capacity of cultivated land should be improved or maintained according to local conditions.

王玉刚, 郑新军, 李彦.

干旱区不同景观单元土壤盐分的变化特征

[J]. 生态学杂志, 2009, 28(11):2293-2298.

[本文引用: 1]

针对内陆河流域空间土壤盐渍化问题,以新疆三工河流域为例,通过调查、取样分析,研究了冲洪积扇和冲洪积平原2个水文地质带上一个生长季5&mdash;10月0~10、10~20 cm土壤盐分积聚特征及其主导因素。结果表明:冲洪积扇土壤盐分含量明显低于冲洪积平原,盐分含量的变异系数均&gt;100%,属于强变异性;灌溉景观土壤盐分的聚积在冲洪积扇和冲洪积平原相似,盐分含量均减小,而非灌溉景观的差异较大,冲洪积扇区土壤盐分含量减小,土壤盐渍化程度减弱;而冲洪积平原区土壤盐分含量升高,盐渍化程度增强。冲洪积扇区土层间盐分变化关系紧密相关(P&lt;0.01),降雨和灌溉对盐分都具有淋洗作用,促进了盐分含量的减少;冲洪积平原区,蒸发对非灌溉景观0~10 cm土层盐分聚积起到促进作用,而10~20 cm土层盐分聚积受上层土壤盐分和地下水位共同作用。

Wang Y G, Zheng X J, Li Y.

Change characteristics of soil salt content in different landscape units in arid region

[J]. Chinese Journal of Ecology, 2009, 28(11):2293-2298.

[本文引用: 1]

/

京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com