Please wait a minute...
E-mail Alert Rss
 
物探与化探  2025, Vol. 49 Issue (4): 818-825    DOI: 10.11720/wtyht.2025.1317
  地质调查资源勘查 本期目录 | 过刊浏览 | 高级检索 |
安徽石台地区碳硅泥岩型铀矿目标层伽马能谱异常特征及其与铀成矿关系
周乾1,2(), 刘琛琛1,2, 杨彪1,2, 方翔宇1,2, 周忠平1,2
1.安徽省核工业勘查技术总院, 安徽 芜湖 241002
2.安徽省地质矿产勘查局 放射性资源与环境工程研究中心, 安徽 芜湖 241002
Anomaly characteristics in gamma-ray spectra and their relationship with uranium mineralization for target layers in carbonaceous-siliceous-argillaceous rock-hosted uranium deposits in Shitai area, Anhui Province, China
ZHOU Qian1,2(), LIU Chen-Chen1,2, YANG Biao1,2, FANG Xiang-Yu1,2, ZHOU Zhong-Ping1,2
1. Anhui Nuclear Exploration Technology Central Institute, Wuhu 241002, China
2. Radiological Resources and Environmental Engineering Research Center, Bureau of Geology and Mineral Exploration of Anhui Province, Wuhu 241002, China
全文: PDF(5836 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

安徽石台地区位于修水—宁国碳硅泥岩型铀成矿带的东段,该区断裂构造活动频繁,铀成矿潜力较大。为探讨皖南石台地区的铀成矿前景,本文在该区开展了1∶5万比例尺的地面伽马能谱测量,采用传统统计法和铀差量分析法提取铀成矿信息,并分析了区内放射性元素的分布特征。通过能谱—地质剖面研究了荷塘组4个层段的放射性异常特征,发现其中第一段的铀含量最高。结合野外地质调查和显微岩石学分析,进一步研究了该层的地质特征及其与铀成矿的潜在关系。结果表明,荷塘组地层是区内的主要铀源层,而荷塘组一段则为主要的含矿层,富含大量有机质、黏土矿物、黄铁矿等成矿物质,有利于铀的富集。对目标层的深入研究为后续该地区同类型铀矿的勘查提供了技术指导。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周乾
刘琛琛
杨彪
方翔宇
周忠平
关键词 伽马能谱特征地质剖面碳硅泥岩型铀矿石台地区    
Abstract

The Shitai area in southern Anhui Province, China is located in the eastern part of the Xiushui-Ningguo carbonaceous-siliceous-argillaceous rock-hosted uranium metallogenic belt. The frequent activity of fault structures in this area contributes to great uranium mineralization potential. To explore the uranium resource potential in the Shitai area, this study conducted 1∶50 000 ground-based gamma-ray spectrometry. Accordingly, this study extracted metallogenic information using traditional statistical methods and difference analysis of uranium content, followed by the analysis of the distribution characteristics of radioactive elements. Then, this study analyzed the radioactive anomalies in the four members of the Hetang Formation based on the spectra and geological profiles. The analytical results revealed that the highest uranium content occurs in the first member of the Hetang Formation. By combining field geological surveys and microscopic petrographic analyses, this study further investigated the geological characteristics of the first member, as well as their potential relationships with uranium mineralization. The results indicate that the Hetang Formation serves as the primary uranium source in the Shitai area, with its first member identified as the main ore-bearing layer. This member is rich in ore-forming materials including organic matter, clay minerals, and pyrite, creating favorable conditions for uranium enrichment. The in-depth research on the target layer will provide technical guidance for exploring the same type of uranium deposits in this area.

Key wordsgamma-ray spectrum characteristic    geological section    carbonaceous-siliceous-argillaceous rock-hosted uranium deposit    Shitai area
收稿日期: 2024-07-25      修回日期: 2024-09-13      出版日期: 2025-08-20
ZTFLH:  P631  
基金资助:安徽省公益性地质调查基金项目“安徽省池州市葛公镇-占大镇一带铀矿调查评价”(2021-g-1-1)
作者简介: 周乾(1990-),男,硕士,2015年毕业于东华理工大学,高级工程师,主要从事地球物理勘查工作。Email:zhouqianwd@163.com
引用本文:   
周乾, 刘琛琛, 杨彪, 方翔宇, 周忠平. 安徽石台地区碳硅泥岩型铀矿目标层伽马能谱异常特征及其与铀成矿关系[J]. 物探与化探, 2025, 49(4): 818-825.
ZHOU Qian, LIU Chen-Chen, YANG Biao, FANG Xiang-Yu, ZHOU Zhong-Ping. Anomaly characteristics in gamma-ray spectra and their relationship with uranium mineralization for target layers in carbonaceous-siliceous-argillaceous rock-hosted uranium deposits in Shitai area, Anhui Province, China. Geophysical and Geochemical Exploration, 2025, 49(4): 818-825.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2025.1317      或      https://www.wutanyuhuatan.com/CN/Y2025/V49/I4/818
Fig.1  石台地区位置(a)及区域地质简图(b)
Fig.2  地层柱状图
组段 代号 岩性 放射性参数 Th/U
U/10-6 Th/10-6 K/%
背景值 均方差 变异系数 背景值 均方差 变异系数 背景值 均方差 变异系数
芜湖组 Qhw 粉砂质黏土 4.42 0.82 0.19 12.05 2.12 0.18 1.95 0.56 0.29 2.73
青坑组 4q 泥质灰岩 4.61 1.63 0.35 11.72 4.83 0.41 2.23 0.99 0.44 2.54
团山组 4t 泥质条带灰岩 4.48 1.36 0.30 6.70 2.05 0.31 1.34 0.56 0.42 1.50
杨柳岗组 3y 纹层状微晶灰岩 5.01 1.75 0.35 11.23 4.52 0.40 2.56 0.83 0.32 2.24
大陈岭组 2d 白云质灰岩 9.13 3.84 0.42 4.18 20.03 4.79 4.18 1.17 0.28 0.46
荷塘组 1-2h 炭质、硅质页岩 15.75 10.97 0.70 12.64 5.73 0.45 2.59 1.19 0.46 0.80
皮园村组 P${t}_{3}^{3b}$ 1p 硅质岩 5.94 2.52 0.42 7.23 4.02 0.56 1.35 1.25 0.93 1.22
蓝田组 P${t}_{3}^{3b}$l 泥岩 5.87 1.61 0.27 13.31 4.48 0.34 3.17 1.28 0.40 2.27
Table 1  石台地区主要地层(岩石)放射性参数
Fig.3  石台地区铀元素相对等值线
Fig.4  石台地区铀差量等值线
Fig.5  能谱—地质剖面综合解释
Fig.6  石台地区铀矿石样品及矿物微观特征照片
[1] 朱鹏飞, 蔡煜琦, 郭庆银, 等. 中国铀矿资源成矿地质特征与资源潜力分析[J]. 地学前缘, 2018, 25(3):148-158.
doi: 10.13745/j.esf.2018.03.012
[1] Zhu P F, Cai Y Q, Guo Q Y, et al. Metallogenetic and geological characterization and resource potential assessment of uranium resources in China[J]. Earth Science Frontiers, 2018, 25(3):148-158.
[2] 秦明宽, 李子颖, 蔡煜琦, 等. 对加强我国铀资源勘查“三新” 突破的战略性思考[J]. 世界核地质科学, 2022, 39(3):383-398.
[2] Qin M K, Li Z Y, Cai Y Q, et al. Strategic thinking on strengthening three new breakthroughs for the uranium exploration in China[J]. World Nuclear Geoscience, 2022, 39(3):383-398.
[3] 封志兵, 聂冰锋, 聂逢君, 等. 地球物理方法在砂岩型铀矿勘查中的应用进展[J]. 物探与化探, 2021, 45(5):1179-1188.
[3] Feng Z B, Nie B F, Nie F J, et al. Application progress of geophysical methods in exploration of sandstone-type uranium deposit[J]. Geophysical and Geochemical Exploration, 2021, 45(5):1179-1188.
[4] 蔡煜琦, 张金带, 李子颖, 等. 中国铀矿资源特征及成矿规律概要[J]. 地质学报, 2015, 89(6):1051-1069.
[4] Cai Y Q, Zhang J D, Li Z Y, et al. Outline of uranium resources characteristics and metallogenetic regularity in China[J]. Acta Geologica Sinica, 2015, 89(6):1051-1069.
[5] 漆富成, 张字龙, 李治兴, 等. 中国碳硅泥岩型铀矿床时空演化规律[J]. 铀矿地质, 2012, 28(2):65-71.
[5] Qi F C, Zhang Z L, Li Z X, et al. Temporal and spatial evolution pattern of carbonaceous-siliceous argillaceous rock type uranium deposits in China[J]. Uranium Geology, 2012, 28(2):65-71.
[6] 张字龙, 漆富成, 何中波, 等. 扬子陆块区东南缘碳硅泥岩型铀矿床与断陷红盆控矿机制[J]. 世界核地质科学, 2012, 29(3):125-129.
[6] Zhang Z L, Qi F C, He Z B, et al. Ore-controlling mechanism of down-faulted red basins over carbonaceous-siliceous-pelitic rock type uranium deposits at the southeastern margin of Yangtze continental block[J]. World Nuclear Geoscience, 2012, 29(3):125-129.
[7] 赵凤民. 中国碳硅泥岩型铀矿地质工作回顾与发展对策[J]. 铀矿地质, 2009, 25(2):91-97.
[7] Zhao F M. An review on geology study of carbonaceous-siliceous-pelitic rock type uranium deposit in China and the strategy for its development[J]. Uranium Geology, 2009, 25(2):91-97.
[8] 董根旺, 王琴, 黄金辉, 等. 利用航空伽马能谱数据进行铀成矿预测——以皖南夏林一带为例[J]. 铀矿地质, 2021, 37(1):87-95.
[8] Dong G W, Wang Q, Huang J H, et al. Airborne gamma spectrum data based uranium prognosis:A case study of Xialin area in south Anhui Province[J]. Uranium Geology, 2021, 37(1):87-95.
[9] 孙立维, 付昆丰. 宁国—绩溪一带碳硅泥岩型铀矿成矿特征及预测[J]. 西部资源, 2020(4):1-3.
[9] Sun L W, Fu K F. The metallogenic characteristics and prediction of the carbonosilicate mudstone deposits in Ningguo-Jixi area[J]. Western Resources, 2020(4):1-3.
[10] 聂逢君, 李满根, 严兆彬, 等. 内蒙古二连盆地砂岩型铀矿目的层赛汉组分段与铀矿化[J]. 地质通报, 2015, 34(10):1952-1963.
[10] Nie F J, Li M G, Yan Z B, et al. Segmentation of the target layer Saihan Formation and sandstone-type uranium mineralization in Erlian Basin[J]. Geological Bulletin of China, 2015, 34(10):1952-1963.
[11] 刘琛琛, 付昆丰, 杨毅. 安徽省池州市葛公镇—占大镇一带铀矿调查评价[R]. 安徽省核工业勘查技术总院, 2023.
[11] Liu C C, Fu K F, Yang Y. Investigation and evaluation of uranium deposits in Gegong Town-Zhanda Town,Chizhou City,Anhui Province[R]. Anhui Nuclear Industry Exploration Technology Institute, 2023.
[12] 时志浩, 陈擎, 叶雷刚, 等. 柴达木盆地西缘砂岩型铀矿目标层地球物理响应特征[J]. 地质与勘探, 2022, 58(2):258-273.
[12] Shi Z H, Chen Q, Ye L G, et al. Geophysical response characteristics of the target layer of sandstone-type uranium deposits in the western margin of Qaidam basin[J]. Geology and Exploration, 2022, 58(2):258-273.
[13] 周乾, 许强平, 何金华, 等. 综合物探方法在山北地区花岗岩型铀矿勘查中的应用研究[J]. 地球物理学进展, 2019, 34(5):1980-1987.
[13] Zhou Q, Xu Q P, He J H, et al. Application research of integrated geophysical method to granite type uranium exploration in Shanbei region[J]. Progress in Geophysics, 2019, 34(5):1980-1987.
[14] 封志兵, 聂逢君, 宁媛丽, 等. 盆地内部砂岩型铀矿找矿技术的设计与探讨[J]. 地质学报, 2022, 96(6):2217-2229.
[14] Feng Z B, Nie F J, Ning Y L, et al. Discussion and design of exploration technology for sandstone-type uranium deposits in the interior of the sedimentary basins[J]. Acta Geologica Sinica, 2022, 96(6):2217-2229.
[15] 汪远志, 李兵海, 张俊伟, 等. 全国铀矿资源潜力评价航放数据处理与研究[J]. 铀矿地质, 2012, 28(6):361-369.
[15] Wang Y Z, Li B H, Zhang J W, et al. Airborne radioactivity data processing and application in the potential evaluation of uranium resource in China[J]. Uranium Geology, 2012, 28(6):361-369.
[16] 王睿, 李占龙, 林泽付. 地面伽马能谱测量在铀矿勘查中的应用——以黑龙江伊春威岭异常区为例[J]. 物探化探计算技术, 2021, 43(3):383-389.
[16] Wang R, Li Z L, Lin Z F. Application of characteristic parameters for gamma-spectrometric data in uranium exploration:An example of the Weiling radiocactive anomaly area deposit in Yichun city,Heilongjiang province[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2021, 43(3):383-389.
[17] 贾翠, 张字龙, 贺锋, 等. 鄂尔多斯盆地东南缘中侏罗统直罗组砂岩岩石学及地球化学特征[J]. 世界核地质科学, 2023, 40(2):186-196.
[17] Jia C, Zhang Z L, He F, et al. Petrologic and geochemical characteristics of sandstone in Middle Jurassic Zhiluo formation at the southeastern margin of Ordos basin[J]. World Nuclear Geoscience, 2023, 40(2):186-196.
[18] 郭福生, 辜骏如. 能谱特征参数$\overline{Th}$/$\overline{U}$与$\overline{Th/U}$之差异及古铀量计算公式的修正[J]. 铀矿地质, 1997, 13(6):356-358.
[18] Guo F S, Gu J R. The difference between spectral characteristic parameter and and the revised formula for calculating paleo-uranium abundance[J]. Uranium Geology, 1997, 13(6):356-358.
[19] 李子颖, 秦明宽, 范洪海, 等. 我国铀矿地质科技近十年的主要进展[J]. 矿物岩石地球化学通报, 2021, 40(4):845-857,1001.
[19] Li Z Y, Qin M K, Fan H H, et al. Main progresses of uranium geology and exploration techniques for the past decade in China[J]. Bulletin of Mineralogy,Petrology and Geochemistry, 2021, 40(4):845-857,1001.
[20] 李路路, 姜国宇, 刘涛, 等. 准噶尔盆地石南地区白垩系储层地球物理方法识别[J]. 物探与化探, 2024, 48(2):334-341.
[20] Li L L, Jiang G Y, Liu T, et al. Geophysical identification of Cretaceous Reservoirs in the Shinan area,Junggar basin[J]. Geophysical and Geochemical Exploration, 2024, 48(2):334-341.
[21] 李治兴, 何中波, 张字龙, 等. 江西修水地区碳硅泥岩型铀矿成矿条件分析及找矿预测[J]. 世界核地质科学, 2017, 34(3):125-130.
[21] Li Z X, He Z B, Zhang Z L, et al. Analysis on ore-forming conditions and prospecting prediction for carbonaceous-siliceous-argillaceous type uranium deposit in Xiushui,Jiangxi[J]. World Nuclear Geoscience, 2017, 34(3):125-130.
[1] 徐建宇. 地震方法在城市浅覆盖区活断层调查中的应用[J]. 物探与化探, 2016, 40(6): 1103-1107.
[2] 顾勤平, 许汉刚, 赵启光. 厚覆盖层地区隐伏活断层探测的地震方法技术——以桥北镇—宿迁断层为例[J]. 物探与化探, 2015, 39(2): 408-415.
[3] 杨利容, 赖德军, 罗娟. 基于AutoCAD实测地质剖面数字成图关键技术[J]. 物探与化探, 2011, 35(2): 261-264.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com