Please wait a minute...
E-mail Alert Rss
 
物探与化探  2019, Vol. 43 Issue (6): 1225-1235    DOI: 10.11720/wtyht.2019.0040
  地质调查·资源勘查 本期目录 | 过刊浏览 | 高级检索 |
一种适用于沿海滩涂区的浅层高精度地震探测技术
岳航羽1,2, 张保卫1,2(), 王凯1,2,3, 李金丽1,2, 王广科1,2, 陈德元1,2
1. 中国地质科学院 地球物理地球化学勘查研究所,河北 廊坊 065000
2. 国家现代地质勘查工程技术研究中心,河北 廊坊 065000
3. 吉林大学 地球探测科学与技术学院,吉林 长春 130026
A technology applied to shallow high-precision seismic detection in coastal tidal flats
Hang-Yu YUE1,2, Bao-Wei ZHANG1,2(), Kai WANG1,2,3, Jin-Li LI1,2, Guang-Ke WANG1,2, De-Yuan CHEN1,2
1. Institute of Geophysical and Geochemical Exploration,Chinese Academy of Geological Sciences,Langfang 065000,China
2. National Center for Geological Exploration Technology,Langfang 065000,China
3. College of GeoExploration Science and Technology,Jilin University,Changchun 130026,China
全文: PDF(7396 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

受地质勘探设备和潮汐时间的制约,沿海滩涂区地质探测程度低,探测精度不足,无法满足沿海滩涂区高精度地质调查的需求。常规浅层地震勘探技术虽能有效地探测到沿海滩涂区浅层第四系底界面及内部层位,但其数据采集仪器设备复杂、采集效率低,直接制约着沿海滩涂区地震探测工作。为此,笔者提出一种适用于沿海滩涂区的高精度地震探测技术,充分利用沿海滩涂区地表地势平坦的特征,采用改造的拖曳式地震探测设备开展数据采集工作,能够有效解决上述困难,为受潮汐影响严重的沿海滩涂区地震探测提供一种新思路;同时,制定了一套针对沿海滩涂区的地震探测信号提取流程和方法组合,最大程度地保留有效地震反射信息,还原滩涂区地下地层结构;在沿海滩涂区实际应用中的效果表明,该技术完全能够为滩涂区地下地层精细划分提供真实可靠的数据支持。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
岳航羽
张保卫
王凯
李金丽
王广科
陈德元
关键词 沿海滩涂区拖曳式高精度浅层地震探测    
Abstract

Due to the restriction of geological detection equipment and tidal time,the degree of geological exploration in coastal tidal-flat areas is low and the detection accuracy is insufficient,which cannot meet the demand of high-precision geological survey in this area.Conventional shallow seismic exploration technology can effectively detect Quaternary bottom interface and internal horizons in the coastal tidal flats,but it has a complex and inefficient data-acquisition equipment,which directly restricts the progress of seismic exploration in this area.Therefore,this paper proposes a high-precision shallow seismic detection technology which is suitable for coastal tidal-flat areas.It can effectively solve the above difficulties by making full use of the surface characteristics in coastal tidal flats and using modified towed seismic detection equipment to acquire field data,thus providing a new idea for seismic detection in this area.At the same time,a set of seismic signal extraction process and method combinations are made for coastal tidal-flat areas,which can retain effective seismic reflection information to the greatest extent and restore the underground geological structure.The results of the application show that the technology can provide reliable data support for the fine division of subsurface in the coastal tidal flats.

Key wordscoastal tidal-flat area    towed    high-precision    shallow seismic detection
收稿日期: 2019-02-13      出版日期: 2019-11-28
:  P631.4  
基金资助:国家重点研发计划项目(2018YFF01013500);中国地质调查局地质调查项目(DD20160151);中国地质调查局地质调查项目(DD20160046);中央级公益性科研院所基本科研业务费专项资金资助项目(AS2016J01);中央级公益性科研院所基本科研业务费专项资金资助项目(AS2017J11);中央级公益性科研院所基本科研业务费专项资金资助项目(JYYWF20180302)
通讯作者: 张保卫
作者简介: 岳航羽(1989-),男,助理工程师,硕士,主要从事地震勘探方法技术的研究与应用工作。Email:yuehangyu@igge.cn
引用本文:   
岳航羽, 张保卫, 王凯, 李金丽, 王广科, 陈德元. 一种适用于沿海滩涂区的浅层高精度地震探测技术[J]. 物探与化探, 2019, 43(6): 1225-1235.
Hang-Yu YUE, Bao-Wei ZHANG, Kai WANG, Jin-Li LI, Guang-Ke WANG, De-Yuan CHEN. A technology applied to shallow high-precision seismic detection in coastal tidal flats. Geophysical and Geochemical Exploration, 2019, 43(6): 1225-1235.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2019.0040      或      https://www.wutanyuhuatan.com/CN/Y2019/V43/I6/1225
Fig.1  沿海滩涂研究区位置
Fig.2  沿海滩涂区拖曳式浅层高精度地震探测现场工作图
道间距/m 3
炮间距/m 6
最小偏移距/m 6
采样间隔/ms 0.25
接收道数/道 24
最大覆盖次数/次 6
Table 1  野外地震数据采集基本参数
Fig.3  单日完成工作量统计
Fig.4  野外现场质控的连续单炮地震记录
Fig.5  有效反射波频谱图
Fig.6  沿海滩涂区地震测线上某三炮原始记录
Fig.7  沿海滩涂区地震探测信号提取流程
Fig.8  噪声衰减前(a)后(b)的单炮记录的效果对比
Fig.9  真振幅恢复前(a)后(b)单炮记录的效果对比
Fig.10  反褶积前(a)后(b)单炮记录的效果对比
Fig.11  反褶积前(a)后(b)单炮记录的频谱对比
Fig.12  反褶积前(a)后(b)单炮记录的自相关对比
Fig.13  精细速度分析中某CMP控制点的速度谱
Fig.14  动校切除前后单炮记录的效果对比
a—动校正前;b—动校正后;c—切除后
Fig.15  沿海滩涂区拖曳式浅层高精度地震探测的叠加剖面
Fig.16  沿海滩涂区拖曳式浅层高精度地震探测的叠加剖面频谱
[1] 章志, 宋晓村, 邱宇 , 等. 江苏沿海滩涂资源开发利用研究[J]. 海洋开发与管理, 2015,3:45-49.
[1] Zhang Z, Song X C, Qiu Y , et al. Study on development and utilization of coastal mudflat resources in Jiangsu[J]. Ocean Development and Management, 2015,3:45-49.
[2] 张晓祥, 严长清, 徐盼 , 等. 近代以来江苏沿海滩涂围垦历史演变研究[J]. 地理学报, 2013,68(11):1549-1558.
doi: 10.11821/dlxb201311010
[2] Zhang X X, Yan C Q, Xu P , et al. Historical evolution of tidal flat reclamation in the Jiangsu coastal areas[J]. Acta Geographica Sinica, 2013,68(11):1549-1558.
[3] 刘康, 陈伟, 吴群 . 沿海滩涂耕地后备资源开发适宜性评价——以江苏省盐城市为例[J]. 农业现代化研究, 2014,35(4):430-436.
[3] Liu K, Chen W, Wu Q . Suitability of reserved coastal mudflat for land development-a case study in Yancheng,Jiangsu Province[J]. Research of Agricultural Modernization, 2014,35(4):430-436.
[4] 徐彩瑶, 濮励杰, 朱明 . 沿海滩涂围垦对生态环境的影响研究进展[J]. 生态学报, 2018,38(3):1148-1161.
doi: 10.5846/stxb201611142316
[4] Xu C Y, Pu L J, Zhu M. Effect of reclamation activity on coastal ecological environment:progress and perspectives[J]. Acta EcologicaSinica, 2018,38(3):1148-1161.
[5] 崔汝国, 王彦春, 曹国滨 , 等. 胜利油田滩浅海地区地震勘探技术[J]. 物探与化探, 2006,30(5):441-445.
[5] Cui R G, Wang Y C, Cao G B . The application of seismic exploration technique to the beach and shallow sea area of the Shengli Oilfield[J]. Geophysical and Geochemical Exploration, 2006,30(5):441-445.
[6] LaFehr E D, Blume F, Weber W S , et al. Seismic acquisition and processing in the tidal zone,Cook Inlet,Alaska:an integrated approach[J]. SEG Technical Program Expanded Abstracts, 1990: 899-902.
[7] 崔汝国, 曹国滨 . 垦东滩浅海地区地震勘探技术[J]. 石油地球物理勘探, 2008,43(s2):21-24.
[7] Cui R G, Cao G B . Seismic exploration technique in Kendong beach and shallow-sea area[J]. Oil Geophysical Prospecting, 2008,43(s2):21-24.
[8] 朱健, 王瑞雪 . 滩浅海地震勘探几种常见问题探讨[J]. 复杂油气藏, 2012,5(2):32-35.
[8] Zhu J, Wang R X . Discussion of several common problems encountered in seismic exploration of paralic zone[J]. Complex Hydrocarbon Reservoirs, 2012,5(2):32-35.
[9] 陈新荣, 李继光, 顾庆雷 , 等. 胜利青东5探区滩浅海资料处理技术[J]. 物探与化探, 2011,35(3):393-397.
[9] Chen X R, Li J G, Gu Q L , et al. Research on processing techniques for seismic data from the tidal zone and shallow water area of Qingdong5 exploration zone in the Shengli Oilfield[J]. Geophysical and Geochemical Exploration, 2011,35(3):393-397.
[10] 李丕龙, 宋玉龙, 王新红 , 等. 滩浅海地区高精度地震勘探技术[M]. 北京: 石油工业出版社, 2006.
[10] Li P L, Song Y L, Wang X H , et al. High-precision seismic exploration technology in shoals and shallow seas[M]. Beijing: Petroleum Industry Press, 2006.
[11] 陈浩林, 张保庆, 叶苑权 , 等. 滩浅海地震勘探关键技术及其应用[M]. 北京: 石油工业出版社, 2014.
[11] Chen H L, Zhang B Q, Ye Y Q , et al. Key techniques and applications of seismic exploration in shoals and shallow seas[M]. Beijing: Petroleum Industry Press, 2014.
[12] 徐明才, 高景华, 刘建勋 , 等. 城市地震勘探[M]. 北京: 地质出版社, 2011.
[12] Xu M C, Gao J H, Liu J X , et al. Urban seismic exploration[M]. Beijing: Geological Publishing House, 2011.
[13] 赵镨, 姜杰, 王秀荣 . 城市地下空间探测关键技术及发展趋势[J]. 中国煤炭地质, 2017,29(9):61-66.
[13] Zhao P, Jiang J, Wang X R , et al. Urban underground space exploration key technologies and development trend[J]. Coal Geology of China, 2017,29(9):61-66.
[14] 李万伦, 田黔宁, 刘素芳 , 等. 城市浅层地震勘探技术进展[J]. 物探与化探, 2018,42(4):653-661.
[14] Li W L, Tian Q N, Liu S F , et al. Progress in the study of shallow seismic exploration technology in urban areas[J]. Geophysical and Geochemical Exploration, 2018,42(4):653-661.
[15] 聂碧波, 赵建明, 郦逸根 , 等. 浅层地震勘探在城市活断层探测中的应用[J]. 工程地球物理学报, 2015,12(1):15-21.
[15] Nie B B, Zhao J M, Li Y G , et al. The comprehensive application of shallow seismic prospecting method to urban active fault detection[J]. Chinese Journal of Engineering Geophysics, 2015,12(1):15-21.
[16] Pujol J, Bartholomew M J, Mickelson A , et al. Shallow seismic detection of the fault zone associated with a high scarp in southwestern Montana[J]. Interpretation, 2015,3(1):25-41.
[17] Li D H, Liao H, Ding Z F , et al. Detection of the Shuangshi-Dachuan fault using shallow seismic reflection in the southern section of the Longmenshan fault zone[J]. Journal of Environmental and Engineering Geophysics, 2016,21(4):161-172.
[18] 刘建勋, 张保卫, 王小江 , 等. 羌塘盆地浅层地震探测方法技术[J]. 物探与化探, 2015,39(4):678-685.
doi: 10.11720/wtyht.2015.4.04
[18] Liu J X, Zhang B W, Wang X J , et al. The method for shallow seismic exploration in Qiangtang basin[J]. Geophysical and Geochemical Exploration, 2015,39(4):678-685.
[19] 徐明才, 刘建勋, 柴铭涛 , 等. 青海木里地区天然气水合物反射地震试验研究[J]. 地质与勘探, 2012,48(6):1180-1187.
[19] Xu M C, Liu J X, Chai M T , et al. An experimental study of natural gas hydrates in the Muli region,Qinghai Province by the seismic reflection method[J]. Geology and Exploration, 2012,48(6):1180-1187.
[20] 王新全, 刘晖, 王林 , 等. 南祁连盆地天然气水合物地震勘探技术[J]. 石油地球物理勘探, 2017,52(4):644-650.
[20] Wang X Q, Liu H, Wang L , et al. Seismic exploration for natural gas hydrate in the South Qilian basin[J]. Oil Geophysical Prospecting, 2017,52(4):644-650.
[21] 岳航羽, 张凯, 王小江 , 等. 陆域冻土区地震探测信号提取技术——以青海哈拉湖地区为例[J]. 物探与化探, 2017,41(6):1183-1189.
[21] Yue H Y, Zhang K, Wang X J , et al. Extraction technology of seismic detection signal in land permafrost area:a case study of Halahu area in Qinghai[J]. Geophysical and Geochemical Exploration, 2017,41(6):1183-1189.
[22] 徐明才, 高景华, 柴铭涛 , 等. 金属矿地震勘探[M]. 北京: 地质出版社, 2009.
[22] Xu M C, Gao J H, Chai M T , et al. Seismic survey for mineral exploration[M]. Beijing: Geological Publishing House, 2009.
[23] 张保卫, 张凯, 岳航羽 , 等. 江苏滩涂区浅层地震探测方法技术应用[J]. 物探与化探, 2018,42(1):144-153.
[23] Zhang B W, Zhang K, Yue H Y , et al. Application of shallow seismic exploration method in tidal-flat region of Jiangsu Province[J]. Geophysical and Geochemical Exploration, 2018,42(1):144-153.
[1] 王猛, 刘媛媛, 王大勇, 董根旺, 田亮, 黄金辉, 林曼曼. 无人机航磁测量在荒漠戈壁地区的应用效果分析[J]. 物探与化探, 2022, 46(1): 206-213.
[2] 崔志强, 胥值礼, 李飞. 塔西南高精度航磁油气地质构造调查[J]. 物探与化探, 2021, 45(4): 846-858.
[3] 游军, 张小明, 罗乾周, 史朝洋, 杨运军, 陈剑祥, 袁攀. 略阳白雀寺杂岩体以西隐伏深大断裂的推断依据及其意义[J]. 物探与化探, 2021, 45(3): 645-652.
[4] 张保卫, 岳航羽, 王凯, 王小江. 沿海滩涂区浅层地震不同类型激发震源适用性分析[J]. 物探与化探, 2021, 45(2): 403-412.
[5] 屈利军, 王庆, 李波, 姚伟. 综合物探方法在湖南香花岭矿田三合圩矿区深部成矿规律研究中的应用[J]. 物探与化探, 2020, 44(6): 1313-1321.
[6] 何继善. 广域电磁法理论及应用研究的新进展[J]. 物探与化探, 2020, 44(5): 985-990.
[7] 赵敏, 盛勇, 戚良刚. 高精度重磁测量在覆盖区找矿中的应用——以无为县蔚山铁铜矿预查为例[J]. 物探与化探, 2019, 43(6): 1211-1216.
[8] 毕炳坤, 常云真, 施强, 申随水. 综合物探在崤山东部浅覆盖区勘查银多金属矿床中的应用[J]. 物探与化探, 2019, 43(5): 976-985.
[9] 何祎, 雷晓东, 关伟, 李晨, 李巧灵. 北京副中心地区燕郊断裂空间展布特征[J]. 物探与化探, 2019, 43(3): 461-467.
[10] 甄慧翔, 杨宇山, 李媛媛, 刘天佑. 基于L-BFGS反演算法的ΔT精确计算磁异常分量Tap方法[J]. 物探与化探, 2019, 43(3): 598-607.
[11] 张虹, 屈进红, 姜作喜, 王萌, 李行素. 高精度航空重力测量系统分项指标设计分析[J]. 物探与化探, 2019, 43(2): 408-414.
[12] 杨玉勤, 李兵海, 张翔. 利用航磁增强处理方法提取喇嘛苏铜矿及其外围弱磁异常[J]. 物探与化探, 2018, 42(6): 1173-1179.
[13] 王美丁, 马见青. 青海循化地区高精度磁异常特征及找矿预测[J]. 物探与化探, 2018, 42(3): 491-498.
[14] 翁望飞, 王德恩, 汪永辉, 吴冀明, 闫峻, 张定源, 方捷. 安徽休宁桃溪铅锌矿地质、物化探特征及其找矿潜力[J]. 物探与化探, 2018, 42(1): 28-37.
[15] 孟凡兴, 贺海扬, 梁永顺, 陈鹏, 吴旭亮, 山亚. 综合物探方法在五里营地区火山岩型铀矿勘查中的应用[J]. 物探与化探, 2017, 41(5): 826-834.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com