Please wait a minute...
E-mail Alert Rss
 
物探与化探  2021, Vol. 45 Issue (1): 46-56    DOI: 10.11720/wtyht.2021.1150
  方法研究·信息处理·仪器研制 本期目录 | 过刊浏览 | 高级检索 |
测量磁场水平分量Hy的电性源广域电磁测深法
罗维斌1(), 丁志军2, 高曙德3, 张星2
1.兰州资源环境职业技术学院 地质与珠宝学院, 甘肃 兰州 730000
2.甘肃省有色地质调查院,甘肃 兰州 730000
3.甘肃省地震局,甘肃 兰州 730000
Wide field electromagnetic sounding using y-component magnetic field with horizontal current dipole source
LUO Wei-Bin1(), DING Zhi-Jun2, GAO Shu-De3, ZHANG Xing2
1. Lanzhou Resources & Environment Voc-Tech College, College of Geology and Jewelry, Lanzhou 730000, China
2. Gansu Nonferrous Geological Survey Institute, Lanzhou 730000, China
3. Earthquake Administration of Gansu Province, Lanzhou 730000, China
全文: PDF(3000 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

基于层状大地表面水平电偶极源电磁场公式系统,提出了比值法获取Hy分量全区视电阻率计算公式。计算了层状地电模型多个收发距的电磁场各场分量ExHyHz,并用这三个场分量计算了全区视电阻率,以及Ex/Hy卡尼亚电阻率,并与模型的MT卡尼亚电阻率频谱曲线进行对比。发现Hy全区视电阻率在赤道装置和轴向装置的广大区域对地电模型均有较好的响应,可进行单分量广域电磁测深。轴向装置Hy全区视电阻率与赤道装置垂直磁场Hz全区视电阻率相似,在低频段与层状模型大地电磁测深卡尼亚电阻率有相似的频率响应特征,在较小收发距条件下对大埋深基底就能有较好的响应。赤道装置和轴向装置测量的水平电场Ex分量全区视电阻率在低频区均会进入“饱和”区。对于各电阻率定义方法,合适的收发距是较好地反映出地电特征深度变化的前提,多收发距测量有利于揭示深部电性特征。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
罗维斌
丁志军
高曙德
张星
关键词 水平电偶极源层状模型水平磁场Hy分量全区视电阻率垂直磁场Hz分量全区视电阻率水平电场Ex分量全区视电阻率    
Abstract

Based on the formula system of the electromagnetic field of the horizontal electric dipole source on the layered earth surface, this paper proposes the wide field apparent resistivity of y-component magnetic field (Hy) using the modulus of impedance. The field components Ex, Hy, and Hz of the electromagnetic field with multiple source-receiver separations on the surface of layered geoelectric model are calculated. The wide field apparent resistivity with these three field components and Ex/Hy cagniard resistivity are calculated, and compared with the MT Cagniard resistivity spectrum curve of the model. It is suggested that the wide field apparent resistivity of Hy has a good response to the geoelectric model in the vast area of the equatorial array and the axial array of the horizontal electric dipole source, and it can be used for single component wide field electromagnetic sounding. The axial array wide field apparent resistivity of Hy is similar to that of the equatorial array wide field of the vertical magnetic field of Hz. In the low frequency band, the wide field apparent resistivity of Hy is similar to that of the Cagniard resistivity of the magnetotelluric sounding of the layered model. Under the condition of small source-receiver separation, the axial array wide field apparent resistivity of Hy can have a better response to the deep basement. The equatorial array and the axial array wide field apparent resistivity of the Ex component of the horizontal electric field will wholly enter "saturated area" in the low frequency band. For each resistivity definition method, the appropriate source-receiver separation is the premise to reflect the geoelectric characteristics better, and the multi source-receiver separation measurement is more conducive to reflecting the deep electrical characteristics.

Key wordshorizontal current dipole source    layered formation model    wide field apparent resistivity of Hy component of magnetic field    wide field apparent resistivity of Hz vertical component of magnetic field    wide field apparent resistivity of Ex component of horizontal electric field
收稿日期: 2020-03-30      修回日期: 2020-05-05      出版日期: 2021-02-20
ZTFLH:  P631  
基金资助:中国地震局地震科技星火计划项目(XH18047)
作者简介: 罗维斌(1972-),男,地球探测与信息技术专业工学博士,正高级工程师,主要从事电磁法应用研究工作。Email:lwbcsu@163.com
引用本文:   
罗维斌, 丁志军, 高曙德, 张星. 测量磁场水平分量Hy的电性源广域电磁测深法[J]. 物探与化探, 2021, 45(1): 46-56.
LUO Wei-Bin, DING Zhi-Jun, GAO Shu-De, ZHANG Xing. Wide field electromagnetic sounding using y-component magnetic field with horizontal current dipole source. Geophysical and Geochemical Exploration, 2021, 45(1): 46-56.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2021.1150      或      https://www.wutanyuhuatan.com/CN/Y2021/V45/I1/46
Fig.1  水平电偶极源层状地电模型
层参数 第一层 第二层
电阻率/(Ω·m) 200 G型[10000,5000,2000,1000,400,300,220];D型[180, 100, 50, 25, 20, 10]
层厚/m 1100 Inf
Table 1  二层型地电模型参数
Fig.2  二层地电模型全区视电阻率频谱曲线
层参数 第一层 第二层 第三层
电阻率/(Ω·m) 200 30 700
层厚/m 1100 120 Inf
Table 2  H型地电模型参数
Fig.3  H型地电模型不同方法视电阻率频谱
层参数 第一层 第二层 第三层
电阻率/(Ω·m) 300 1200 100
层厚/m 1300 310 Inf
Table 3  K型地电模型参数
Fig.4  K型地电模型轴向装置不同方法不同收发距视电阻率频谱
层参数 第一层 第二层 第三层 第四层
电阻率/(Ω·m) 200 30 700 20
层厚/m 1100 120 300 Inf
Table 4  HK型地电模型参数
Fig.5  赤道向电阻率不同定义方式频率曲线对比(收发距7 000 m)
Fig.6  HK型地电模型全区视电阻率多收发距响应曲线(f=50.12 Hz)
层参数 第一层 第二层 第三层 第四层
电阻率/(Ω·m) 300 2000 60 750
层厚/m 1100 450 200 Inf
Table 5  KH型地电模型参数
Fig.7  KH型地电模型不同收发距全区视电阻率频谱
[1] Kaufman A A, Alekseev D, Oristaglio M. Principles of electromagnetic methods in surface geophysics[M]. Amsterdam:Elsevier, 2014.
[2] Zhdanov M S. Foundations of geophysical electromagnetic theory and methods[M]. Amsterdam:Elsevier, 2017.
[3] 何继善. 广域电磁法和伪随机信号电法[M]. 北京: 高等教育出版社, 2010.
[3] He J S. Wide-area electromagnetic method and pseudo-random signal electrical method [M]. Beijing: Higher Education Press, 2010.
[4] 汤井田, 何继善. 可控源音频大地电磁法及其应用[M]. 长沙: 中南大学出版社, 2005.
[4] Tang J T, He J S. Controlled source audio magnetotelluric method and its application [M]. Changsha: Central South University Press, 2015.
[5] 底青云, 朱日祥, 薛国强, 等. 我国深地资源电磁探测新技术研究进展[J]. 地球物理学报, 2019,62(6):2128-2138.
[5] Di Q Y, Zhu R X, Xue G Q, et al. New development of the electromagnetic (EM) methods for deep exploration[J]. Chinese J. Geophys. , 2019,62(6):2128-2138.
[6] 底青云, 薛国强, 王中兴, 等. 多通道瞬变电磁探测技术[M]. 北京: 科学出版社, 2019.
[6] Di Q Y, Xue G Q, Wang Z X, et al. Multichannel transient electromagnetic detection technology [M]. Beijing: Science Press, 2019.
[7] 殷长春. 航空电磁理论与勘查技术[M]. 北京: 科学出版社, 2018.
[7] Yin C C. Aeromagnetic theory and exploration technology [M]. Beijing: Science Press, 2018.
[8] 万伟, 唐新功, 黄清华. 陆地可控源电磁法探测效果的频率响应[J]. 地球物理学报, 2019,62(12):4846-4859.
[8] Wan W, Tang X G, Huang Q H. Frequency effect on land CSEM sounding[J]. Chines J.Geophys., 2019,62(12):4846-4859.
[9] 周海根. 多场源地空频率域电磁探测方法研究[D]. 长春:吉林大学, 2017.
[9] Zhou H G. Research on ground-airborne frequency-domain electromagnetic methods with multiple sources[D]. Changchun: Jilin University, 2017.
[10] 李毓茂. 电磁频率测深方法与电偶源电磁频率测深量板[M]. 徐州: 中国矿业大学出版社, 2012.
[10] Li Y M. Electromagnetic frequency sounding method and dipole electromagnetic frequency sounding board [M]. Xuzhou: China University of Mining and Technology Press, 2012.
[11] 佟铁钢. E-Hz广域电磁方法研究[D]. 长沙:中南大学, 2010.
[11] Tong T G. E-Hz wide area electromagnetic method research[D]. Changsha: Central South University, 2010.
[12] 伏海涛, 罗维斌, 丁志军, 等. 水平电偶极源层状模型垂直磁场全区视电阻率计算方法[J]. 物探与化探, 2019,43(6):1309-1319.
[12] Fu H T, Luo W B, Ding Z J, et al. Calculation method of whole zone apparent resistivity of vertical magnetic field on surface of layered model excited by horizontal electric dipole source[J]. Geophysical and Ceochemical Exploration, 2019,43(6):1309-1319.
[13] 罗维斌, 汤井田, 韩海涛, 等. 编码源电磁测深法获取大地全区视电阻率谱的方法及装置[P/OL]. ZL 2016 1 0013962. X, 2018-03-23.
[13] Luo W B, Tang J T, Han H T, et al. The method and device of obtaining whole zone apparent resistivity spectrum of the earth by coded source electromagnetic sounding [P/OL]. ZL 2016 1 0013962.X, 2018-03-23.
[14] Chave A D, Jones A G. The magnetotelluric method: Theory and practice [M]. New York: Cambridge University Press, 2012.
[15] Viacheslav V S. Electromagnetic sounding of the Earth’s interior: Theory, modeling, practice(2nd ed)[M]. Amsterdam:Elsevier, 2015.
[16] Richard A. Geyer . Handbook of geophysical exploration at sea(2nd ed)[M]. Boca Raton: CRC Press, 2018.
[17] Strack K M. Exploration with deep transient electromagnetic[M]. Amsterdam:Elsevier, 1992.
[18] Chave A D. Numerical integration of related Hankel transforms by quadrature and continued fraction expansion[J]. Geophysics, 1983,48(12):1671-1677.
doi: 10.1190/1.1441448
[19] Ingeman-Nielsena T, Baumgartnera F O. CR1Dmod: A matlab program to model 1D complex resistivity effects in electrical and electro-magnetic surveys[J]. Computers & Geosciences, 2006,32:1411-1419.
[20] Key K. Is the fast Hankel transform faster than quadrature?[J] Geophysics, 2012,77(3): F21-F30, http://dx.doi.org/10.1190/GEO2011-0237.1.
doi: 10.1190/GEO2011-0237.1
[21] 罗维斌. 伪随机海洋可控源多道电磁测深法研究[D]. 长沙:中南大学, 2007.
[21] Luo W B. Study on pseudorandom marine controlled-source electromagnetic sounding with multi-offsets[D]. Changsha: Central South University, 2007.
[22] Ziolkowski A, Hobbs B, Wright D. Multitransient electromagnetic demonstration survey in France[J]. Geophysics, 2007,72(4):197-207.
[23] Anton Z, Evert S. Introduction to controlled-source electromagnetic methods: detecting subsurface fluids [M]. New York: Cambridge University Press, 2019.
[1] 伏海涛, 罗维斌, 丁志军, 余其林, 张世宽. 水平电偶极源层状模型垂直磁场全区视电阻率计算方法[J]. 物探与化探, 2019, 43(6): 1309-1319.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com