E-mail Alert Rss
 

物探与化探, 2021, 45(5): 1135-1146 doi: 10.11720/wtyht.2021.1522

生态地质调查

花岗质岩浆岩土壤重金属地球化学特征及生态风险评价——以云南盈江旧城—姐冒地区为例

肖高强,1,2, 向龙洲3, 代达龙1, 高晓红1, 宗庆霞3

1.云南省地质调查院,云南 昆明 650216

2.自然资源部 三江成矿作用及资源勘查利用重点实验室,云南 昆明 650051

3.云南省国土资源规划设计研究院,云南 昆明 650216

Geochemical characteristics and ecological risk assessment of heavy metals in granitic magmatic soil: A case study of the Jiucheng-Jiemao area in Yingjiang County, Yunnan Province

XIAO Gao-Qiang,1,2, XIANG Long-Zhou3, DAI Da-Long1, GAO Xiao-Hong1, ZONG Qing-Xia3

1. Yunnan Institute of Geological Survey, Kunming 650216, China

2. Key Laboratory of Sanjing Metallogeny and Resources Exploration and Utilization, MNR, Kunming 650051, China

3. Yunnan Planning and Design Institute of Land and Resources, Kunming 650216, China

责任编辑: 蒋实

收稿日期: 2020-11-14   修回日期: 2021-01-28  

基金资助: 云南省自然资源厅地质勘查基金项目.  D201711

Received: 2020-11-14   Revised: 2021-01-28  

作者简介 About authors

肖高强(1983-),男,高级工程师,硕士,主要从事勘查和环境地球化学工作。Email: 13057980@qq.com

摘要

基于云南盈江旧城—姐冒地区238件岩石样品和4 931件土壤样品,与其他地质单元对比,重点研究花岗质岩浆岩岩石和土壤中重金属地球化学特征和来源,并进行土壤重金属生态风险评价。结果表明:花岗质岩浆岩和高黎贡山岩群(Pt1GL.)具有相似的物源或继承性,二者岩石中Pb含量相对上地壳偏高,而其他重金属含量较低;第四系(Qa)、芒棒组(N2m)和高黎贡山岩群(Pt1GL.)土壤重金属含量和变化特征与花岗质岩浆岩基本一致,且土壤重金属含量明显低于第四系(Qb)和关上组(D1g)地层;结合岩性组分看,成土母质可能均以花岗质岩浆岩为主;花岗质岩浆岩和关上组(D1g)土壤重金属含量主要受自然源影响,人为活动影响相对较小;地累积指数和潜在生态风险指数表明花岗质岩浆岩土壤重金属生态风险小,为清洁土壤;德宏州地区具有粮、糖、蔬菜等生产功能的农田土壤成土母质以花岗质岩浆岩为主,但相关工作程度低。通过对比研究认为,德宏州地区具有发展绿色、无公害食品产地的巨大潜力。

关键词: 土壤重金属 ; 花岗质岩浆岩 ; 来源解析 ; 生态风险评价 ; 盈江县

Abstract

Based on 238 rock samples and 4,931 soil samples collected from the Jiucheng-Jiemao area of Yingjiang County, Yunnan Province, and compared with other geological units, this paper is focused on the study of geochemical characteristics and sources of heavy metals in granitic magmatic rocks and soils as well as ecological risk assessment of soil heavy metals. According to the results obtained, the granitic magmatic rocks and Gaoligongshan group(Pt1GL.)rocks have similar provenances or inheritances. The Pb content in the two kinds of rocks is higher than that in the upper crust, while the content of other heavy metals is lower. The soil heavy metal content and change characteristics of the Quaternary (Qa), Mangbang formation (N2m) and Gaoligongshan group (Pt1GL.) are basically the same as those of the granitic magmatic rock, which are significantly lower than the Quaternary (Qb) and Guanshang formation (D1g). Combined with lithologic compositions, the soil parent materials of the Quaternary (Qa), Mangbang formation (N2m) and Gaoligongshan group (Pt1GL.)may be mainly granitic magmatic rocks. The soil heavy metal values of the granitic magmatic rock and Guanshang formation (D1g) are mainly affected by natural sources, and the influence of human activities is little. The geoaccumulation index and the potential ecological risk index indicate that the granitic magmatic soil has a low ecological risk of heavy metals and is a clean soil.The soil-forming parent materials of farmland with the production function of grain, sugar, vegetable, etc. in Dehong Prefecture are mainly granitic magmatic rock, but related study work is insufficient. Through comparative research, it is believed that Dehong Prefecture has great potential in developing green and pollution-free food production.

Keywords: soil heavy metals ; granitic magmatic rock ; source analysis ; ecological risk assessment ; Yingjiang County

PDF (5119KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

肖高强, 向龙洲, 代达龙, 高晓红, 宗庆霞. 花岗质岩浆岩土壤重金属地球化学特征及生态风险评价——以云南盈江旧城—姐冒地区为例. 物探与化探[J], 2021, 45(5): 1135-1146 doi:10.11720/wtyht.2021.1522

XIAO Gao-Qiang, XIANG Long-Zhou, DAI Da-Long, GAO Xiao-Hong, ZONG Qing-Xia. Geochemical characteristics and ecological risk assessment of heavy metals in granitic magmatic soil: A case study of the Jiucheng-Jiemao area in Yingjiang County, Yunnan Province. Geophysical and Geochemical Exploration[J], 2021, 45(5): 1135-1146 doi:10.11720/wtyht.2021.1522

0 引言

土壤作为自然环境的构成要素和农业生产的重要自然资源,是人类和生物赖以生存的物质基础,耕地质量的好坏关系人民群众身体健康,更是与美丽中国建设密切相关[1]。然而我国土壤环境质量总体状况堪忧[2,3,4,5],部分地区污染较为严重,土壤污染已成为我国生态文明和美丽中国建设以及全面建成小康社会的突出短板之一。

土壤中的重金属主要有两个来源:一是人为污染,包括农业生产[6,7]、采矿和工业活动[8,9,10]、城市生活[11,12]及其他污染,如污水灌溉[13,14,15]、大气沉降[16,17,18]和焚烧以及生活垃圾填埋[19,20]等人类活动。人为成因的重金属污染,具有较高的活性,易被植物吸收、富集。二是地质成因,主要是指在成土过程中母质所含的重金属经风化、淋溶等作用,在土壤中富集从而形成地质高背景值。近年来,通过一些调查研究发现,对我国土壤重金属影响较大的成土母岩主要有基性—超基性岩,碳酸盐岩和黑色岩系等。例如,发育于玄武岩区域的土壤可能具有较高的Cr、Ni、Cu、Zn等环境风险[21,22,23],发育于碳酸盐岩区域的土壤可能具有较高的Cd、As等环境风险[24,25,26,27,28],发育于黑色页岩区域的土壤具有较高的Cd、Cr、Ni等环境风险[29,30,31,32]。目前对发育于花岗质岩浆岩区的土壤重金属含量特征及对生态环境的影响研究甚少,而云南省德宏州地区出露有大面积的花岗质岩浆岩和变质岩,出露面积约6 820 km2,占全州国土面积的59.4%,岩性主要有花岗岩、二长花岗岩、正长花岗岩、花岗闪长岩、闪长岩、片麻岩等,同时该地区盈江、梁河、陇川、户撒、遮放、瑞丽等为云南省重要的粮、糖、蔬菜生产基地,其农田土壤成土母质基本为花岗质岩浆岩。

笔者以云南省盈江县旧城—姐冒研究区为例,重点研究发育于花岗质岩浆岩区的土壤重金属地球化学特征和来源,并进行生态风险评价,发现优质清洁特色土地资源,为德宏州地区生态农业发展、农用地分类管理、土地利用规划和粮食安全生产等提供科学依据。

1 研究区概况

研究区位于云南省盈江县坝区一带,面积451.96 km2,地貌主要为陆相山间断陷盆地[33],部分地区属低山和中山地貌,大盈江由北东至南西流过。区内属南亚热带季风气候,年均日照2 364.5 h,年均气温19.3 ℃,年平均降雨量1 464 mm,无霜期324.4 d,光、热、水、气条件较好,适宜各种动植物的生长繁殖,是远近闻名的“粮蔗之乡”。区内土壤类型[34]以水稻土为主,沿大盈江河谷两岸分布,为洪积、冲洪积物发育的土壤,其次分别为赤红壤和红壤,成土母岩主要为花岗质岩和片麻岩。土地利用类型主要有水田、林地、旱地、住宅用地、园地、水域等,其中耕(园)地面积占比为67.07%,农业生产活动以种植水稻、冬马铃薯、甘蔗等为主。区内出露地层(图1a)有第四系、新近系芒棒组(N2m)、泥盆系关上组(D1g)和古元古界高黎贡山岩群(Pt1GL.),其中第四系出露面积最广,为典型的河流相沉积,位于兴和—盈江县城—新城一带的第四系(Qb)物源主要为泥盆系关上组(D1g)地层, 而其他地区的第四系(Qa)物源主要为盆地两侧的花岗质岩浆岩和变质岩[35];芒棒组(N2m)岩性为花岗质砂砾岩、细砂岩,黏土质粉砂岩;关上组(D1g)岩性为板岩、砂岩、泥岩、页岩、灰岩等;高黎贡山岩群(Pt1GL.)岩性为变粒岩、斜长片麻岩、片岩、石英岩。区内花岗质岩浆岩分布较为广泛,主要于盆地四周分布,岩性主要有花岗岩、二长花岗岩、钾长花岗岩、花岗闪长岩、闪长岩等。

图1

图1   盈江县地质图(a)及其区域地质(b)、区域位置示意(c)

Fig.1   Geological map of Yingjiang County(a) and its regional geology(b) and regional location (c)


2 材料与方法

2.1 样品采集和分析测试

土壤样品的采集和加工严格按照《土地质量地球化学评价规范》(DZ/T 0295—2016)的要求进行。本次共采集土壤样品4 931件,采样深度为0~20 cm,以GPS定位点为中心,在50~l00 m范围内向四周辐射4~6个分样点,等份组合成一个混合样品,每件土壤样品原始质量大于1 kg。采集的样品经充分阴干,阴干后用木锤碾细,过10目(孔径为2 mm)的尼龙筛,采用混匀缩分法称取200 g过筛样品储存于纸质样品中,用于理化分析。为了解研究区不同地质单元岩石中重金属含量特征,采集岩石样品238件,涉及4个不同的地质单元。岩石样品采集时一般选择露头良好,风化程度低,未受蚀变、矿化影响的岩石,同时避开脉岩。为增强样品的代表性,在采样点附近30 m范围内3~5处采集新鲜岩石,岩石样品质量大于300 g。

土壤和岩石样品分析测试均在云南省地质矿产勘查开发局中心实验室完成,分析测试过程严格按照《多目标区域地球化学调查规范》(DZ/T 0295—2016)和《生态地球化学评价样品分析技术要求(试行)》(DD2005-03)要求进行。用X射线荧光光谱仪(XRF)测定Al2O3、SiO2;用电感耦合等离子体光谱仪(ICP-AES)测定Fe2O3、MgO、K2O、CaO;用电感耦合等离子体质谱仪(ICP-MS)测定Cd、Cr、Cu、Ni、Pb、Zn、Mn;用原子荧光光谱法(AFS)测定As、Hg;用电位法测定pH。样品的分析质量采用外部质量控制和内部质量监控相结合的方法控制,外部质量控制将标准控制样以密码形式插入,外部标准控制样各指标的准确度和精密度合格率均在97%~100%之间,相关系数均在0.966~0.999之间,双样本方差分析F检验值在1.02~1.09之间,均小于F单尾临界值;内部质量监控从国家标准物质分析的准确度与精密度、报出率、重复性检验和异常点检查等质量参数进行监控,各类指标分析的准确度与精密度合格率均为100%,报出率在98.2%~100%之间,重复性检验合格率在95.8%~100%之间,异常点的重复性检验合格率在95.3%~100%之间。

2.2 地质累积指数法

地质累积指数法是由德国科学家Muller于1969年在水环境沉积物重金属污染物研究中提出[36],通过土壤重金属浓度与自然地球化学背景值之间的关系来确定重金属污染程度的一种方法,该方法不仅考虑地球化学背景值对重金属污染物的影响,而且能够评估人类活动影响。其计算公式为:

Igeo=log2(Ci/kBi),

式中:Igeo表示为地质累积指数;Ci为土壤中i元素含量的实测值(10-6);Bii元素含量的背景值(10-6);k为修正系数,一般取1.5[5,37]。在本研究中,选择云南省土壤背景值[38]作为地球化学背景值计算Igeo值。Igeo与污染水平之间的对应关系如下:未污染,Igeo≤0;未污染至中度污染,0<Igeo≤1;中度污染,1<Igeo≤2;中度至重度污染,2<Igeo≤3;重度污染,3<Igeo≤4;重度至极度污染,4<Igeo≤5;极度污染,Igeo>5[39]

2.3 潜在生态风险指数法

潜在生态风险指数法是瑞典科学家Hakanson[40]提出的,该方法综合考虑了重金属的含量与其生态—环境效应,并且与毒理学相联系,是目前最为常用的评价土壤重金属污染程度和生态风险的方法。其计算公式如下:

Eri=Tri×CdiC1i;
RI=i=1mEri

式中: Eri为给定重金属i的潜在生态风险指数; Cdi为土壤中重金属i的实测含量(10-6); C1i为重金属i的土壤背景值(10-6),本研究选择云南省土壤背景值[38]作为地球化学背景值; Tri为重金属i的毒性响应系数。重金属毒性水平顺序为Hg>Cd>As>Pb=Cu=Ni>Cr>Zn,相应的毒性响应系数分别为40、30、10、5、5、5、2、1[40,41,42]

潜在生态风险指数(Eri)是描述某一污染物(元素)的污染程度,从低到高分为5个等级: Eri<40,轻微生态危害;40≤ Eri<80,中等生态危害;80≤ Eri<160,强生态危害;160≤ Eri<320,很强生态危害; Eri≥320,极强生态危害。RI是描述某一点多个污染物(元素)潜在生态风险指数的综合值,分为4个等级:RI<150,轻微生态危害;150≤RI<300,中等生态危害;300≤RI<600,强生态危害;RI≥600,很强生态危害。

3 结果与讨论

3.1 重金属含量特征

3.1.1 不同地质单元岩石重金属含量特征

不同地质单元岩石重金属含量统计结果见表1图2a。关上组(D1g)岩石中的As和芒棒组(N2m)岩石中的Cd含量相对不均匀,变异系数大,且关上组(D1g)岩石中的As中位值与算术平均值相差十几倍,进一步结合表层土壤As空间分布特征看,可能主要受断裂构造或局部矿化热液活动影响所致,因此中位值可能比算术平均值能够更好地代表整个数据的整体趋势和分布特征。关上组(D1g)岩石中的As、Cd、Cr、Cu、Ni、Zn中位值均高于其他地质单元,而Hg和Pb分别在芒棒组(N2m)和高黎贡山岩群(Pt1gl)岩石中含量最高;与上地壳[43]相比,区内除所有地质单元岩石中的Pb和关上组(D1g)岩石中的Zn表现为富集外,其他重金属元素则均表现为贫化,其中高黎贡山岩群(Pt1GL.)和花岗质岩浆岩重金属除Pb外,其他元素含量相对较低,富集系数仅在0.08~0.61之间;可见,区内由成土母岩风化形成的土壤可能存在较高的Pb含量,而其他重金属含量可能较低。从重金属含量变化特征看,关上组(D1g)明显不同于其他地质单元,且高黎贡山岩群(Pt1GL.)和花岗质岩浆岩变化特征相似度较高,二者可能具有相似的物源或继承性。

表1   不同地质单元岩石重金属含量统计结果

Table 1  Statistical results of heavy metal content in rocks of different geological units

地质单元统计参数AsCdCrCuHgNiPbZn
N2m(n=6)最小值/10-61.490.0129.98.140.0097.514.313.6
最大值/10-63.230.135626.20.05529.148.498.7
算术平均值/10-62.400.05340.815.90.02515.026.052.1
标准差/10-60.720.0569.267.140.027.8115.035.3
变异系数/%29.810522.745.072.952.057.867.8
中位值/10-62.410.02538.814.70.02113.117.940.4
D1g(n=50)最小值/10-60.690.0115.77.420.0053.617.247.85
最大值/10-64690.1517851.10.00857.274.9189
算术平均值/10-633.40.05380.921.70.00635.820.584.1
标准差/10-61040.03534.28.650.00114.812.036.2
变异系数/%31166.842.339.99.5641.358.443.1
中位值/10-62.80.04088.420.80.00640.317.987.4
Pt1GL.(n=55)最小值/10-60.610.017.244.80.0061.834.84.95
最大值/10-64.950.0826.534.30.01818.371.4132
算术平均值/10-62.160.02711.411.00.0104.0350.330.2
标准差/10-60.900.0122.575.090.0022.249.5723.8
变异系数/%41.543.822.646.223.655.619.078.9
中位值/10-61.910.030119.320.013.5648.821.0
花岗质岩浆岩(n=127)最小值/10-60.370.017.172.990.0051.245.054.86
最大值/10-68.530.1173.527.30.04629.155.395.2
算术平均值/10-62.130.02716.28.680.0096.3428.337.9
标准差/10-61.170.0149.033.590.0064.6313.418.1
变异系数/%54.852.655.941.462.773.147.147.7
中位值/10-61.940.02013.67.820.0074.6629.841.2
上地壳含量[43]/10-64.80.0992280.05471767

新窗口打开| 下载CSV


图2

图2   不同地质单元岩石和土壤重金属含量变化特征

Fig.2   Variation characteristics of heavy metal content in rocks and soils in different geological units


3.1.2 不同地质单元土壤重金属含量特征

研究区土壤pH值在4.09~8.98之间,平均值为5.89,土壤样品多呈酸性。不同地质单元土壤重金属含量特征见表2图2b。从重金属含量看,第四系(Qb)和关上组(D1g)土壤重金属含量明显高于其他地质单元;从重金属含量变化特征看,可以明显分为两组:第四系(Qb)和关上组(D1g)土壤重金属含量变化特征基本相似,进一步证明位于兴和—盈江县城—新城一带的第四系(Qb)物源主要受关上组(D1g)地层影响;而第四系(Qa)、芒棒组(N2m)、高黎贡山岩群(Pt1GL.)和花岗质岩浆岩土壤重金属含量变化特征基本相似,其中高黎贡山岩群(Pt1GL.)地层岩石有大量的花岗质片麻岩,芒棒组(N2m)地层含有花岗质砂砾岩组分,因此二者与花岗质岩浆岩具有相似的重金属含量变化特征,第四系(Qa)物源可能主要受盆地两侧的花岗质岩浆岩和高黎贡山岩群(Pt1GL.)地层影响,但Cd和Pb可能还叠加有外来源。

表2   不同地质单元土壤重金属平均含量统计结果

Table 2  Statistical results of average soil heavy metal content in different geological units

地质单元统计参数AsCdCrCuHgNiPbZn
Qa(n=3018)含量范围/10-60.03~35.40.01~1.794.24~1272.08~65.50.006~0.4530.85~78.715.9~30520~331
算术平均值/10-62.640.09438.412.40.03213.741.768.8
变异系数/%86.582.740.743.071.252.327.527.7
中位值/10-62.150.08038.211.70.02813.141.667.1
Qb(n=674)含量范围/10-60.18~1360.01~4.0610.3~1754.45~68.60.007~0.6283.69~1378.52~37219.5~533
算术平均值/10-615.50.14288.827.40.04841.148.891.2
变异系数/%83.0149.940.839.577.348.851.945.5
中位值/10-613.50.09091.629.20.04443.342.584.1
N2m(n=258)含量范围/10-60.05~51.40.01~1.587.42~1082.68~52.40.006~0.1452.25~5322.2~22126.4~341
算术平均值/10-64.300.04948.113.20.03918.937.059.1
变异系数/%104.4206.349.958.748.261.736.739.4
中位值/10-63.050.04044.910.950.03616.035.757.5
D1g(n=396)含量范围/10-62.61~2960.01~3.4637.3~1528.23~91.60.017~0.1316.9~13713.5~89917.1~887
算术平均值/10-625.70.19510335.20.06051.960.2122
变异系数/%126.7174.617.627.230.329.9148.561.2
中位值/10-617.50.09510435.50.05849.937.4109
Pt1GL.(n=198)含量范围/10-60.1~11.20.01~0.1711.5~1083.05~52.80.012~0.1651.99~56.28.25~94.817.1~329
算术平均值/10-63.100.04648.814.40.05118.639.367.9
变异系数/%80.456.553.872.842.070.530.237.9
中位值/10-62.280.04041.29.340.04714.640.265.8
花岗质岩浆岩(n=374)含量范围/10-60.03~130.01~0.7712~2812.88~40.80.007~0.1491.01~1097.5~76.820.5~145
算术平均值/10-63.170.04149.212.70.04517.635.255.7
变异系数/%86.9125.856.760.544.972.033.828.0
中位值/10-62.200.03047.610.650.04015.636.053.7
云南省土壤背景值[38]/10-618.40.2265.246.30.0642.540.689.7
宣威市落水镇[44]/10-613.61.62135.2233.80.0974.532.8185.7
宣威市热水镇[45]/10-618.11.18174.1202.20.0971.134.9167.2
广南县[46]/10-629.884.96111.4950.020.3563.5845.42224.63
保山市[47]/10-6230.26912848.70.17857.945.2114.8

新窗口打开| 下载CSV


与云南省土壤背景值[38]相比(图2b),关上组(D1g)土壤中Cr、Ni、Zn和第四系(Qb)土壤中Cr、Ni、Pb含量较高,其余重金属含量偏低;第四系(Qa)土壤中Pb稍高外,其余重金属含量明显偏低;芒棒组(N2m)、高黎贡山岩群(Pt1GL.)和花岗质岩浆岩土壤重金属含量差别较小,除Pb稍高外,其余重金属含量均明显偏低。进一步与云南省宣威市[44,45]、广南县[46]、保山市[47]地区土壤重金属含量值相比(表2),第四系(Qa)、芒棒组(N2m)、高黎贡山岩群(Pt1GL.)和花岗质岩浆岩土壤重金属除Pb含量相当外,其余重金属含量明显偏低;可见发育于花岗质岩浆岩区的土壤重金属具有较低的背景值。

根据《土壤环境质量农用地土壤污染风险管控标准(试行)》(GB 15618—2018)中给出的农用地土壤污染风险管控标准,第四系(Qa)、芒棒组(N2m)、高黎贡山岩群(Pt1GL.)和花岗质岩浆岩环境综合无风险等级比例均在97%以上(图3a),且重金属含量均低于相应风险管控制值;而第四系(Qb)和关上组(D1g)环境综合无风险等级比例仅分别为77.45%和62.37%,其重金属含量超过相应筛选值的元素(图3b、c)分别有As(9.2%)、Cd(6.82%)、Ni(6.82%)、Cr(4.01%)、Pb(3.56%)、Zn(1.48%)、Cu(0.45%)和Ni(17.93%)、Cd(14.39%)、As(13.64%)、Pb(13.13%)、Zn(7.07%)、Cu(5.3%)、Cr(0.51%),超过相应管控值的元素(图3b、c)分别有Cd(0.3%)和As(1.77%)、Pb(1.52%)、Cd(1.01%);此外,研究区土壤Hg 均未超过其筛选值。

图3

图3   土壤环境等级评价

Fig.3   Soil environmental grade evaluation


综上所述,第四系(Qb)和关上组(D1g)可归为一类,成土母质可能以关上组(D1g)地层为主,其土壤重金属含量明显偏高,环境风险相对较大;而第四系(Qa)、 芒棒组(N2m)、 高黎贡山岩群(Pt1GL.)和花岗质岩浆岩可归为一类,成土母质可能以花岗质岩浆岩为主,其土壤重金属含量低,环境风险较小。

3.2 土壤重金属来源解析

3.2.1 耕作土和自然土重金属含量特征

根据土地利用现状情况,将水田、水浇地、旱地、园地中的土壤划为耕作土,可能受自然源或人为源共同影响;将天然林地中的土壤划为自然土,可能仅受自然源影响,人为干扰小[48]。不同成土母质耕作土与自然土重金属含量特征见图4。由此可知,关上组(D1g)耕作土和自然土中重金属平均含量明显高于花岗质岩浆岩;关上组(D1g)自然土中重金属平均含量略高于耕作土,进一步表明关上组(D1g)土壤重金属可能主要受自然源影响,受人为活动影响较小;花岗质岩浆岩耕作土中除Cd平均含量明显高于自然土外,其平均含量分别为0.09×10-6和0.05×10-6,而其余重金属平均含量略高于或低于自然土,表明花岗质岩浆岩土壤除Cd叠加有外来源影响外,其余重金属可能主要受自然源影响。

图4

图4   不同成土母质耕作土和自然土重金属含量变化特征

Fig.4   Variation characteristics of heavy metal content in farming soil and natural soil with different parent materials


3.2.2 主成分分析

已有研究表明,主成分分析可对重金属的来源问题进行有效的解析[49]。为进一步分析土壤重金属污染来源特征,加入了一些土壤常量元素,并分别对关上组(D1g)和花岗质岩浆岩土壤中的各变量进行主成分分析,其KMO检验值分别为0.805和0.845,并采用最大方差法进行旋转,其结果见图5图6

图5

图5   关上组(D1g)土壤元素旋转因子载荷

Fig.5   The element rotation factor loading diagram in Guanshang group (D1g) soil


图6

图6   花岗质岩浆岩土壤元素旋转因子载荷

Fig.6   The element rotation factor loading diagram in Granitic magmatic soil


关上组(D1g)以主成分特征值大于1共提取4个主成分(图5),解释的总方差累计贡献为73.4%,其中第一主成分因子F1解释了约40.6%的整体变量,Fe2O3、Al2O3、SiO2、Cr、Cu、Ni在F1上得分最高,除SiO2负荷量为-0.885外,其余元素负荷量均在0.8以上,Fe2O3和Al2O3是岩石经风化成土过程后土壤中较为稳定的原生矿物或次生矿物,代表了土壤中的铁铝氧化物,而SiO2负荷量为负值,可能与区内气候湿热岩石风化成土过程中去硅作用有关[50],因此F1可以解释为自然源;第二主成分因子F2解释了约16.6%的整体变量,Pb、Zn、Cd、As、Mn在F2上得分最高,负荷量均在0.55以上,关上组(D1g)地层岩石含有铁锰质板岩组份且夹有一层厚约0.8 m的软锰矿层[51],Mn可能主要来自于成土母质,而土壤中铁锰氧化物对重金属元素具有较强的吸附能力[52],因此F2也可以解释为自然源;Hg在4个主成分因子中负荷量均较小,结合其空间分布特征看[53],高含量区(≥0.043×10-6)基本沿关上组(D1g)地层呈面状分布,因此也可解释为自然源。

花岗质岩浆岩以主成分特征值大于1共提取4个主成分(图6),解释的总方差累计贡献为77.1%,其中第一主成分因子F1解释了约42.4%的整体变量,Cr、Ni、Cu、As、Fe2O3在F1上得分最高,负荷量均在0.55以上;第二主成分因子F2解释了约17.2%的整体变量,Al2O3、Mn、Hg在F2上得分最高,负荷量均在0.44以上;Fe2O3、Al2O3和Mn一般在土壤中能够形成较为稳定的原生矿物或次生矿物,而铁、铝、锰氧化物对重金属元素具有较强的吸附性[52],因此F1和F2均可以解释为自然源;第三主成分因子F3解释了约10.8%的整体变量,Pb、Zn、Cd、Mn在F3上得分最高,负荷量均在0.48以上,结合研究区Pb的赋存形态来看[53],残渣态和铁锰结合态的比例达79.1%,因此F3也可以解释为自然源。

3.3 土壤重金属污染程度评价

研究区关上组(D1g)土壤重金属地累积指数(Igeo)平均值变化趋势依次为Cr(-0.16)>Pb(-0.43)>Zn(-0.53)>Ni(-0.67)>Hg(-0.91)>As(-1.08)>Cu(-1.32)>Cd(-1.80),花岗质岩浆岩土壤重金属Igeo平均值变化趋势依次为Pb(-0.63)>Zn(-1.07)>Cr(-1.42)>Hg(-1.54)>Ni(-2.37)>Cd(-2.38)>Cu(-2.62)>As(-3.85),土壤重金属Igeo平均值均小于0,且关上组(D1g)土壤重金属Igeo平均值均高于花岗质岩浆岩,表明研究区土壤整体上表现为未污染,花岗质岩浆岩发育形成的土壤重金属含量相对较低。

不同成土母质土壤重金属Igeo等级评价结果见图7,花岗质岩浆岩土壤重金属Igeo未污染比例均在97%以上,最高污染等级仅为中度至重度污染,局部地区存在污染风险的元素主要有Hg、Pb、Cd、Zn、Cr;而关上组(D1g)土壤重金属Igeo未污染比例在48.22%~99.81%之间,最高污染等级为重度污染,局部地区存在污染风险的元素主要有Cd、Pb、As、Zn、Hg,进一步表明花岗质岩浆岩发育形成的土壤环境更清洁。

图7

图7   不同成土母质土壤重金属地累积指数(Igeo)等级评价

Fig.7   Evaluation map of the accumulation index (Igeo) of heavy metals in different soil parent materials


3.4 土壤重金属潜在生态风险评价

研究区关上组(D1g)土壤重金属潜在生态风险指数平均值由强到弱依次为Hg(35.2)>Cd(22.05)>As(10.49)>Pb(6.52)>Ni(5.3)>Cu(3.27)>Cr(2.88)>Zn(1.14),花岗质岩浆岩土壤重金属潜在生态风险指数平均值由强到弱依次为Hg(23.16)>Cd(11.37)>Pb(5)>Ni(1.73)>As(1.54)>Cu(1.36)>Cr(1.25)>Zn(0.75),土壤中所有重金属潜在生态风险指数平均值均低于40,且关上组(D1g)土壤重金属潜在生态风险指数平均值明显高于花岗质岩浆岩,与土壤重金属污染程度评价结果基本一致;关上组(D1g)和花岗质岩浆岩土壤重金属综合潜在生态风险指数平均值分别为86.86和46.16,均远低于150,进一步表明研究区土壤重金属整体上潜在生态风险小。

不同成土母质土壤重金属潜在生态风险指数等级评价结果见图8,关上组(D1g)和花岗质岩浆岩土壤重金属综合潜在生态风险指数评价等级均以轻微生态危害为主,所占比例分别为94.49%和99.66%,其中除关上组(D1g)部分土壤中Hg、Cd、As、Pb和花岗质岩浆岩部分土壤中Hg、Cd存在中等生态危害及以上评价等级外,其余重金属潜在生态风险指数评价等级均为轻微生态危害。

图8

图8   不同成土母质土壤重金属潜在生态风险指数评价

Fig.8   Evaluation map of potential ecological risk index of heavy metals in different soil parent materials


4 结论

1) 相对上地壳元素丰度而言,研究区花岗质岩浆岩岩石中Pb含量相对较高,其他重金属含量较低。

2) 结合土壤重金属含量、变化特征及地质单元岩性看,研究区第四系(Qb)和关上组(D1g)可归为一类,成土母质以关上组(D1g)地层为主,土壤重金属含量相对偏高,环境风险相对较大;第四系(Qa)、芒棒组(N2m)、高黎贡山岩群(Pt1GL.)和花岗质岩浆岩可归为一类,成土母质以花岗质岩浆岩为主,土壤重金属含量相对低,环境风险较小。

3) 关上组(D1g)自然土中重金属平均含量略

高于耕作土,花岗质岩浆岩耕作土中除Cd平均含量明显高于自然土外,其余重金属平均含量略高于或低于自然土;主成分分析结果表明,花岗质岩浆岩和关上组(D1g)土壤重金属含量与铁、铝、锰氧化物含量相关性较高;可见二者土壤重金属含量主要受自然源影响,人为活动影响相对较小。

4) 花岗质岩浆岩土壤重金属地累积指数(Igeo)评价等级均以未污染为主,比例在97%以上;综合潜在生态风险指数平均值为46.16,轻微生态危害等级比例高达99.66%,且两项指标均明显低于关上组(D1g),可见花岗质岩浆岩土壤生态风险小,环境较为清洁。

5) 云南德宏州地区59.4%的国土出露花岗质岩浆岩和高黎贡山岩群(Pt1GL.),同时该地区具有粮、糖、蔬菜等生产功能的农田土壤成土母质以花岗质岩浆岩为主;通过对比研究分析,德宏州地区农田土壤重金属含量应较低,生态风险较小,具有发展绿色、无公害食品产地的巨大潜力。建议在开发利用过程中,更应该加强监管和保护力度,走绿色持续发展的道路。

参考文献

吴克宁.

耕地质量及其提升“密码”的破译

[J]. 国土资源科普与文化, 2017(4):12-17.

[本文引用: 1]

Wu K N.

Cultivated land quality and its improvement

[J]. Popularization of Land and Resources Science and Culture, 2017(4):12-17.

[本文引用: 1]

中国地质调查局.

中国耕地地球化学调查报告(2015年)

[EB/OL]. 中国地质调查局网站, 2015-06-25[2020-09-25]. http://www.cgs.gov.cn/upload/201506/20150626/gdbg.pdf .

URL     [本文引用: 1]

China Geological Survey.

China’s cultivated land geochemical survey report (2015)

[EB/OL]. China Geological Survey website, 2015-06-25[2020-09-25]. http://www.cgs.gov.cn/upload/201506/20150626/gdbg.pdf .

URL     [本文引用: 1]

骆永明, 滕应.

我国土壤污染的区域差异与分区治理修复策略

[J]. 中国科学院院刊, 2018, 33(2):145-152.

[本文引用: 1]

Luo Y M, Teng Y.

Regional difference in soil pollution and strategy of soil zonal governance and remediation in China

[J]. Bulletin of the Chinese Academy of Sciences, 2018, 33(2):145-152.

[本文引用: 1]

Zhao F J, Ma Y, Zhu Y G, et al.

Soil contamination in China: Current status and mitigation strategies

[J]. Environ Sci Technol, 2015, 49(2):750-759.

DOI:10.1021/es5047099      URL     [本文引用: 1]

Chen H, Teng Y, Lu S, et al.

Contamination features and health risk of soil heavy metals in China

[J]. Science of The Total Environment, 2015(512-513):143-153.

[本文引用: 2]

周江明.

中国耕地重金属污染现状及其人为污染源浅析

[J]. 中国土壤与肥料, 2020(2):83-92.

[本文引用: 1]

Zhou J M.

The present status of heavy metal(loid)s pollution in farmland soils and analysis of polluting sources in China

[J]. Soils and Fertilizers Sciences in China, 2020(2):83-92.

[本文引用: 1]

Cai L, Xu Z, Bao P, et al.

Multivariate and geostatistical analyses of the spatial distribution and source of arsenic and heavy metals in the agricultural soils in Shunde, Southeast China

[J]. Journal of Geochemical Exploration, 2015, 148:189-195.

DOI:10.1016/j.gexplo.2014.09.010      URL     [本文引用: 1]

崔元俊, 李肖鹏, 董建, .

山东烟台金矿区及城镇周边土壤重金属化学形态分布及转化

[J]. 物探与化探, 2013, 37(6):1100-1106.

[本文引用: 1]

Cui Y J, Li X P, Dong J, et al.

The chemical speciation distribution and transition of heavy metals in soil around gold ore districts as well as cities and towns in Yantai, Shandong province

[J]. Geophysical and Geochemical Exploration, 2013, 37(6):1100-1106.

[本文引用: 1]

孙泽航.

小型多金属矿山周边土壤及作物重金属污染及居民潜在健康风险评估

[D]. 广州:中国科学院大学, 2020.

[本文引用: 1]

Sun Z H.

Soil and crops heavy metal pollution and potential health risk assessment for the residents around small-scale polymetallic mine

[D]. Guangzhou:University of Chinese Academy of Sciences, 2020.

[本文引用: 1]

Xie W, Peng C, Wang H, et al.

Bioaccessibility and source identification of heavy metals in agricultural soils contaminated by mining activities

[J]. Environmental Earth Sciences, 2018, 77(17):1-12.

DOI:10.1007/s12665-017-7169-5      URL     [本文引用: 1]

薛淼, 谢金亮.

我国城市生活垃圾焚烧厂周边土壤重金属和有机污染特征

[J]. 有色冶金节能, 2019, 35(4):60-65.

[本文引用: 1]

Xue M, Xie J L.

Characteristics of heavy metals and organic pollution in soil around MSW incineration plant in China

[J]. Energy Saving of Nonferrous Metallurgy, 2019, 35(4):60-65.

[本文引用: 1]

焦海林.

城市生活污水和污泥中的重金属

[J]. 化学工程与装备, 2019, 271(8):319-321.

[本文引用: 1]

Jiao H L.

Heavy metals in municipal sewage and sludge

[J]. Chemical Engineering & Equipment, 2019, 271(8):319-321.

[本文引用: 1]

Singh P, Purakayastha T J, Mitra S, et al.

River water irrigation with heavy metal load influences soil biological activities and risk factors

[J]. Journal of Environmental Management, 2020, 270:110517.

DOI:10.1016/j.jenvman.2020.110517      URL     [本文引用: 1]

Sardar A, Shahid M, Natasha , et al.

Risk assessment of heavy metal(loid)s via Spinacia oleracea ingestion after sewage water irrigation practices in Vehari District

[J]. Environmental Science and Pollution Research, 2020, 27(32):39841-39851.

DOI:10.1007/s11356-020-09917-4      URL     [本文引用: 1]

杨硕, 阎秀兰, 冯依涛.

河北曹妃甸某农场农田土壤重金属空间分布特征及来源分析

[J]. 环境科学学报, 2019, 39(9):3064-3072.

[本文引用: 1]

Yang S, Yan X L, Feng Y T.

Spatial distribution and source identification of heavy metals in the farmland soil of the Caofeidian in Hebei Province

[J]. Acta Scientiae Circumstantiae, 2019, 39(9):3064-3072.

[本文引用: 1]

王增辉.

鲁西南平原区大气干湿沉降元素输入通量及来源浅析:以巨野县为例

[J]. 物探与化探, 2020, 44(4):839-846.

[本文引用: 1]

Wang Z H.

An analysis of the input flux and source of elements in dry and wet atmospheric deposition of southwest plain of Shandong: A case study of Juye County

[J]. Geophysical and Geochemical Exploration, 2020, 44(4):839-846.

[本文引用: 1]

吕悦风, 谢丽, 朱文娟, .

基于环境容量的县域农用地土壤重金属风险概率预警研究

[J]. 长江流域资源与环境, 2020, 29(1):253-264.

[本文引用: 1]

Lyu Y F, Xie L, Zhu W J, et al.

Risk prediction of heavy metals in farmland soil based on environmental capacity: Case study of the county scale in northern Zhejiang Province

[J]. Resources and Environment in the Yangtze Basin, 2020, 29(1):253-264.

[本文引用: 1]

郭颖, 李玉冰, 薛生国, .

广西某赤泥堆场周边土壤重金属污染风险

[J]. 环境科学, 2018, 39(7):3349-3357.

[本文引用: 1]

Guo Y, Li Y B, Xue S G, et al.

Risk analysis of heavy metal contamination in farmland soil around a bauxite residue disposal area in Guangxi

[J]. Environmental Science, 2018, 39(7):3349-3357.

[本文引用: 1]

李英华, 杨朝旭, 伯鑫, .

生活垃圾焚烧厂周边土壤中PCDD/Fs及重金属含量

[J]. 中国环境科学, 2020, 40(2):726-735.

[本文引用: 1]

Li Y H, Yang C X, Bo X, et al.

PCDD/Fs levels and heavy metal characteristics in soils surrounding typical municipal waste incineration plants in the Chengdu

[J]. China Environmental Science, 2020, 40(2):726-735.

[本文引用: 1]

童立志, 韦黎华, 王峰, .

焚烧飞灰重金属含量及浸出长期变化规律研究

[J]. 中国环境科学, 2020, 40(5):2132-2139.

[本文引用: 1]

Tong L Z, Wei L H, Wang F, et al.

Study on the long-term changes of heavy metal content and leaching behavior of municipal solid waste incineration fly ash

[J]. China Environmental Science, 2020, 40(5):2132-2139.

[本文引用: 1]

Wu W, Qu S, Nel W, et al.

The influence of natural weathering on the behavior of heavy metals in small basaltic watersheds: A comparative study from different regions in China

[J]. Chemosphere, 2020, 262:127897.

DOI:10.1016/j.chemosphere.2020.127897      URL     [本文引用: 1]

Mendoza-Grimón V, Hernández-Moreno J M, Rodríguez Martín J A, et al.

Trace and major element associations in basaltic ash soils of El Hierro Island

[J]. Journal of Geochemical Exploration, 2014, 147:277-282.

DOI:10.1016/j.gexplo.2014.06.010      URL     [本文引用: 1]

Mikkonen H G, van de Graaff R, Clarke B O, et al.

Geochemical indices and regression tree models for estimation of ambient background concentrations of copper, chromium, nickel and zinc in soil

[J]. Chemosphere, 2018, 210:193-203.

DOI:S0045-6535(18)31213-X      PMID:30005340      [本文引用: 1]

Geochemical ratios between elements of environmental concern and Fe have been recommended for estimation of "background" concentrations of Cr, Cu, Ni and Zn in soil. However, little research has occurred to assess the consistency of geochemical ratios across soils developed in different environments. Broad application of generic geochemical ratios could result in under or over estimation of anthropogenic impacts to soil and subsequent inaccurate assessment of risk to the environment. A soil survey was undertaken in Victoria, Australia, including collection of samples (n = 622) from surface (0-0.1 m below ground level) and sub-surface (0.3-0.6 m below ground level) soils, overlying Tertiary-Quaternary basalt, Tertiary sediments and Silurian siltstones and sandstones. Samples were analyzed for metals and soil physical and chemical properties (particle size, cation exchange capacity, organic matter and pH). Geochemical correlations between elements in soils from different parent materials and environments were compared against geochemical relationships reported in Australia and internationally. Ratios of Cr and Fe were relatively consistent across parent materials, and comparable to published models for estimation of background Cr. Conversely, ratios between Cu, Ni, and Zn with Fe, were variable between soils developed in different weathering environments and/or soil depths. Alternative regression equations and rule based regression tree models were developed as an improved means for prediction of ambient background Cu, Ni and Zn concentrations in soil. Ambient background concentrations of Ni and Cr were predictable across parent materials and depths, allowing these models to be extended to soils across Australia and potentially internationally.Copyright © 2018 Elsevier Ltd. All rights reserved.

Wen Y, Li W, Yang Z, et al.

Enrichment and source identification of Cd and other heavy metals in soils with high geochemical background in the karst region, Southwestern China

[J]. Chemosphere, 2020, 245:125620.

DOI:10.1016/j.chemosphere.2019.125620      URL     [本文引用: 1]

王佛鹏, 肖乃川, 周浪, .

桂西南地球化学异常区农田重金属空间分布特征及污染评价

[J]. 环境科学, 2020, 41(2):876-885.

[本文引用: 1]

Wang F P, Xiao N C, Zhou L, et al.

Spatial distribution characteristics and pollution assessment of heavy metals on farmland of geochemical anomaly area in Southwest Guangxi

[J]. Environmental Science, 2020, 41(2):876-885.

DOI:10.1021/es061576c      URL     [本文引用: 1]

马宏宏, 彭敏, 刘飞, .

广西典型碳酸盐岩区农田土壤—作物系统重金属生物有效性及迁移富集特征

[J]. 环境科学, 2020, 41(1):449-459.

[本文引用: 1]

Ma H H, Peng M, Liu F, et al.

Bioavailability, translocation, and accumulation characteristic of heavy metals in soil-crop system from a typical carbonate rocks Area in Guangxi, China

[J]. Environmental Science, 2020, 41(1):449-459.

[本文引用: 1]

陈同斌, 庞瑞, 王佛鹏, .

桂西南土壤镉地质异常区水稻种植安全性评估

[J]. 环境科学, 2020, 41(4):1855-1863.

[本文引用: 1]

Chen T B, Pang R, Wang F P, et al.

Safety assessment of rice planting in soil cadmium geological anomaly areas in Southwest Guangxi

[J]. Environmental Science, 2020, 41(4):1855-1863.

[本文引用: 1]

Xia X, Ji J, Yang Z, et al.

Cadmium risk in the soil-plant system caused by weathering of carbonate bedrock

[J]. Chemosphere, 2020, 254:126799.

DOI:10.1016/j.chemosphere.2020.126799      URL     [本文引用: 1]

Peng B, Rate A, Song Z, et al.

Geochemistry of major and trace elements and Pb-Sr isotopes of a weathering profile developed on the Lower Cambrian black shales in central Hunan, China

[J]. Applied Geochemistry, 2014, 51:191-203.

DOI:10.1016/j.apgeochem.2014.09.007      URL     [本文引用: 1]

Liu Y, Xiao T, Perkins R B, et al.

Geogenic cadmium pollution and potential health risks, with emphasis on black shale

[J]. Journal of Geochemical Exploration, 2017, 176:42-49.

DOI:10.1016/j.gexplo.2016.04.004      URL     [本文引用: 1]

赵万伏, 宋垠先, 管冬兴, .

典型黑色岩系分布区土壤重金属污染与生物有效性研究

[J]. 农业环境科学学报, 2018, 37(7):1332-1341.

[本文引用: 1]

Zhao W F, Song Y X, Guan D X, et al.

Pollution status and bioavailability of heavy metals in soils of a typical black shale area

[J]. Journal of Agro-Environment Science, 2018, 37(7):1332-1341.

[本文引用: 1]

余昌训, 彭渤, 唐晓燕, .

黑色页岩与土壤重金属污染

[J]. 矿物岩石地球化学通报, 2008, 27(2):137-145.

[本文引用: 1]

Yu C X, Peng B, Tang X Y, et al.

The black shale and relative heavy metal contamination of soils derived from the black shale

[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2008, 27(2):137-145.

[本文引用: 1]

程靖伟.

云南大盈江河谷第四纪地层研究

[D]. 北京:中国地质大学(北京), 2013.

[本文引用: 1]

Cheng J W.

Study on quaternary strata in Yingjiang valley of Yunnan

[D]. Beijing:China University of Geosciences (Beijing), 2013.

[本文引用: 1]

肖高强, 宗庆霞, 向龙洲, .

云南省盈江县旧城—姐冒地区土壤和农产品硒地球化学特征及影响因素

[J]. 物探与化探, 2020, 44(2):412-418.

[本文引用: 1]

Xiao G Q, Zong Q X, Xiang L Z, et al.

Geochemical characteristics and influencing factors of Selenium in soils and agricultural products in the Jiucheng-Jiemao area Yingjiang County, Yunnan Province

[J]. Geophysical and Geochemical Exploration, 2020, 44(2):412-418.

[本文引用: 1]

谢冰晶.

滇西南大盈江流域梁河、盈江盆地第四纪地层及活动构造特征研究

[D]. 北京:中国地质大学(北京), 2014.

[本文引用: 1]

Xie B J.

Research of quaternary strata and active fault in Lianghe and Yingjiang basin of Dayingjiang valley, Southwest Yunnan

[D]. Beijing:China University of Geosciences (Beijing), 2014.

[本文引用: 1]

Muller G.

Index of geoaccumulation in sediments of the Rhine River

[J]. GeoJournal, 1969, 2(3):109-118.

[本文引用: 1]

段嘉欣, 梁斌, 李忠惠, .

川南兴文僰王山酸化土壤重金属污染特征及来源解析

[J]. 四川环境, 2020, 39(4):129-135.

[本文引用: 1]

Duan J X, Liang B, Li Z H, et al.

Pollution characteristics and source analysis of heavy metals in acidified soil in Xingwen area, South Sichuan

[J]. Sichuan Environment, 2020, 39(4):129-135.

[本文引用: 1]

中国环境监测总站. 中国土壤元素背景值[M]. 北京: 中国环境科学出版社, 1990.

[本文引用: 4]

China Environmental Monitoring Center. Background value of soil elements in China[M]. Beijing: China Environmental Science Press, 1990.

[本文引用: 4]

陈奕云, 唐名阳, 王淑桃, .

基于文献计量的中国农田土壤重金属污染评价

[J]. 土壤通报, 2016, 47(1):219-225.

[本文引用: 1]

Chen Y Y, Tang M Y, Wang S T, et al.

Evaluation of heavy metal pollution in farmland soil of China based on bibliometrics

[J]. Chinese Journal of Soil Science, 2016, 47(1):219-225.

[本文引用: 1]

Hakanson L.

An ecological risk index for aquatic pollution control.a sedimentological approach

[J]. Water Research, 1980, 14(8):975-1001.

DOI:10.1016/0043-1354(80)90143-8      URL     [本文引用: 2]

Tian K, Huang B, Xing Z, et al.

Geochemical baseline establishment and ecological risk evaluation of heavy metals in greenhouse soils from Dongtai, China

[J]. Ecological Indicators, 2017, 72:510-520.

DOI:10.1016/j.ecolind.2016.08.037      URL     [本文引用: 1]

周亚龙, 郭志娟, 王成文, .

云南省镇雄县土壤重金属污染及潜在生态风险评估

[J]. 物探与化探, 2019, 43(6):1358-1366.

[本文引用: 1]

Zhou Y L, Guo Z J, Wang C W, et al.

Assessment of heavy metal pollution and potential ecological risks of soils in Zhenxiong County, Yunnan Province

[J]. Geophysical and Geochemical Exploration, 2019, 43(6):1358-1366.

[本文引用: 1]

Rudnick R, Gao S.

Composition of the Continental Crust

[M]//Holland H D, Turekian K K. Treatise on Geochemistry(2nd edition). Oxford:Elsevier Ltd, 2014:4-55.

[本文引用: 2]

唐瑞玲, 王惠艳, 吕许朋, .

西南重金属高背景区农田系统土壤重金属生态风险评价

[J]. 现代地质, 2020, 34(5):917-927.

[本文引用: 2]

Tang R L, Wang H Y, Lyu X P, et al.

Ecological risk assessment of heavy metals in farmland system from an area with high background of heavy metals, Southwestern China

[J]. Geoscience, 2020, 34(5):917-927.

[本文引用: 2]

张富贵, 彭敏, 王惠艳, .

基于乡镇尺度的西南重金属高背景区土壤重金属生态风险评价

[J]. 环境科学, 2020, 41(9):4197-4209.

[本文引用: 2]

Zhang F G, Peng M, Wang H Y, et al.

Ecological risk assessment of heavy metals at township scale in the high background of heavy metals, Southwestern, China

[J]. Environmental Science, 2020, 41(9):4197-4209.

[本文引用: 2]

洪涛, 孔祥胜, 岳祥飞.

滇东南峰丛洼地土壤重金属含量、来源及潜在生态风险评价

[J]. 环境科学, 2019, 40(10):4620-4627.

[本文引用: 2]

Hong T, Kong X S, Yue X F.

Concentration characteristics, source analysis, and potential ecological risk assessment of heavy metals in a peak-cluster depression area, Southeast of Yunnan Province

[J]. Environmental Science, 2019, 40(10):4620-4627.

[本文引用: 2]

Zhang L, McKinley J, Cooper M, et al.

A regional soil and river sediment geochemical study in Baoshan area, Yunnan province, southwest China

[J]. Journal of Geochemical Exploration, 2020, 217:106557.

DOI:10.1016/j.gexplo.2020.106557      URL     [本文引用: 2]

刘意章, 肖唐付, 宁增平, .

三峡库区巫山建坪地区土壤镉等重金属分布特征及来源研究

[J]. 环境科学, 2013, 34(6):2390-2398.

[本文引用: 1]

Liu Y Z, Xiao T F, Ning Z P, et al.

Cadmium and selected heavy metals in soils of Jianping area in Wushan County, the three gorges region: Distribution and source recognition

[J]. Environmental Science, 2013, 34(6):2390-2398.

[本文引用: 1]

宋波, 张云霞, 庞瑞, .

广西西江流域农田土壤重金属含量特征及来源解析

[J]. 环境科学, 2018, 39(9):4317-4326.

[本文引用: 1]

Song B, Zhang Y X, Pang R, et al.

Analysis of characteristics and sources of heavy metals in farmland soils in the Xijiang river draining of Guangxi

[J]. Environmental Science, 2018, 39(9):4317-4326.

DOI:10.1021/es050244p      URL     [本文引用: 1]

陆景冈. 土壤地质学[M]. 北京: 地质出版社, 2006:9-33.

[本文引用: 1]

Lu J G. Soil geology[M]. Beijing: Geological Publishing House, 2006:9-33.

[本文引用: 1]

陈天培, 彭镇芳, 韩文华, .

腾冲幅G-47-27盈江幅G-47-26 1/20万区域地质调查报告

[R]. 玉溪:云南地质矿产局区域地质调查队, 1982:39-40.

[本文引用: 1]

Chen T P, Peng Z F, Han W H, et al.

Tengchong map-sheet G-47-27 Yingjiang map-sheet G-47-26 1∶200,000 Regional Geological Survey Report

[R]. Yuxi: Regional Geological Survey Team of Yunnan Bureau of Geology and Mineral Resources, 1982:39-40.

[本文引用: 1]

杨宋玲, 李方林, 黄建军, .

碳酸盐岩风化过程中次生富集作用对土壤地球化学异常评价的影响——以浙江下铜山铅锌异常评价为例

[J]. 物探与化探, 2015, 39(6):1124-1131.

[本文引用: 2]

Yang S L, Li F L, Huang J J, et al.

The influence of the carbonate weathering secondary enrichment on soil geochemical anomaly evaluation: A case study of the evaluation of the Xiatong Mountain lead and zinc anomaly in Zhejiang province

[J]. Geophysical and Geochemical Exploration, 2015, 39(6):1124-1131.

[本文引用: 2]

肖高强, 向龙洲, 宗庆霞, .

云南省盈江县旧城—姐冒地区 1∶5 万土地质量地球化学调查评价成果报告

[R]. 昆明: 云南省地质调查院, 2019.

[本文引用: 2]

Xiao G Q, Xiang L Z, Zong Q X, et al.

1∶50,000 land quality geochemical survey and evaluation results report in Jiucheng-Jiemao area, Yingjiang County, Yunnan Province

[R]. Kunming: Yunnan Provincial Geological Survey Institute, 2019.

[本文引用: 2]

/

京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com , whtbjb@163.com