Please wait a minute...
E-mail Alert Rss
 
物探与化探  2020, Vol. 44 Issue (4): 709-718    DOI: 10.11720/wtyht.2020.0152
  地质调查·资源勘查 本期目录 | 过刊浏览 | 高级检索 |
频谱差异烃类检测新方法在东胜气田的应用
王东辉1(), 吴晓川2
1.中石化华北油气分公司 勘探开发研究院,河南 郑州 450006
2.中国科学院南海海洋研究所 边缘海与大洋地质重点实验室,广东 广州 510301
A new method of spectrum difference hydrocarbon detection and its application to the Dongsheng gas field
Dong-Hui WANG1(), Xiao-Chuan WU2
1. SINOPEC North China Company,Exploration and Development Research Institute,Zhengzhou 450006,China
2. CAS Key Laboratory of Ocean and Marginal Sea Geology,South China Sea Institute of Oceanology,Chinese Academy of Sciences,Guangzhou 510301,China
全文: PDF(12447 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

查明含烃区与不含烃区的频谱差异是利用频谱属性开展地震烃类检测工作的重要前提。为了直观地确定出含烃区与不含烃区的频谱差异,提出基于频谱差异的烃类检测方法,结合实际油气试采数据和研究需要,将已知井分为含烃井与不含烃井,通过比较分类对象射孔段的瞬时振幅谱(点谱)来找出含烃相关的频谱差异,并利用多种频谱属性交会的方式得到地震含烃区。本文通过目的层盒1段下伏煤层有无的正演模型确定了最大波谷振幅属性为预测储层信息的有利属性,但更深入分析认为频谱差异属性比常规的最大波谷属性更能表征含烃与不含烃的差异。通过设置属性门槛值的方式来量化含烃区与不含烃区在频谱属性上的差异,并将10 Hz单频振幅、25 Hz积分振幅、低频衰减梯度、高频衰减梯度等4种含烃门槛值内的频谱属性进行交会,继而确定出潜在的含烃区,通过水平井验证检测结果,表明该方法具有一定的有效性。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王东辉
吴晓川
关键词 频谱差异频谱属性属性交会烃类检测    
Abstract

The crucial precondition of using spectral attributes to conduct hydrocarbon detection is to investigate the spectral differences between gas-bearing and none-gas bearing area.In order to determine the spectrum difference between hydrocarbon bearing and none-hydrocarbon bearing areas intuitively and incorporate the constraints of oil and gas production testing data,this paper proposes a hydrocarbon detection technology based on spectrum difference,which divides known wells into hydrocarbon-bearing wells and non-hydrocarbon bearing wells according to the actual oil and gas production testing data and research needs.By comparing the instantaneous amplitude spectral of pay zones of classified objects,researchers can recognize spectral differences related to hydrocarbons and use the intersection of multiple spectrum attributes to characterize the differences so as to obtain the seismic hydrocarbon-bearing areas that could be identified.The maximum trough amplitude was determined as the relative advantage attribute to recognize the reservoir information of the H1 member according to the forward modeling contrast between presence and absence of underlying coal seams.More in-depth analysis shows that the spectrum difference can better forecast hydrocarbon-bearing and hydrocarbon-absent zones than the maximum trough amplitude.The differences of spectral attributes between hydrocarbon-bearing areas and non-hydrocarbon bearing areas was quantified by setting attributed threshold value,and the spectral attributes in individual thresholds of the four spectral attributes were crossplotted to dentify the potential hydrocarbon bearing areas.The hydrocarbon dictation results are supported by horizontal wells,which indicates the method is reliable.

Key wordsspectrum differences    spectral attribute    attribute crossplots    hydrocarbon detection
收稿日期: 2020-03-30      出版日期: 2020-08-28
:  P631.4  
基金资助:国家科技重大专项“低丰度致密低渗油气藏开发关键技术”(2016ZX05048)
作者简介: 王东辉(1982-),男,2010年毕业于长江大学矿产普查与勘探专业,主要从事地质、地震解释与管理工作。Email:swordwang516@163.com
引用本文:   
王东辉, 吴晓川. 频谱差异烃类检测新方法在东胜气田的应用[J]. 物探与化探, 2020, 44(4): 709-718.
Dong-Hui WANG, Xiao-Chuan WU. A new method of spectrum difference hydrocarbon detection and its application to the Dongsheng gas field. Geophysical and Geochemical Exploration, 2020, 44(4): 709-718.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2020.0152      或      https://www.wutanyuhuatan.com/CN/Y2020/V44/I4/709
Fig.1  面积差值法、衰减梯度法、频谱衰减法、流体活动因子法的图示及主要依据
Fig.2  东胜气田三维区位置(a)和三维区内井位分布及盒1段气水柱状(b)图
Fig.3  盒1段过J77、J120、J123井连井剖面及盒1段射孔位置
Fig.4  过J77、J120、J121井地震剖面与层位标定
Fig.5  无煤层(a)和有煤层(b)情况下的正演模拟
Fig.6  盒1段均方根振幅(a)和T9d波峰之上波谷的最大绝对值振幅(b)
Fig.7  盒1段井点均方根振幅(a)和T9d波峰之上最大波谷振幅(b)统计直方图
Fig.8  含气井与不含气井盒1射孔段的瞬时振幅谱图(a)和积分振幅谱图(b)
Fig.9  盒1段含气井与不含气井井位处10 Hz(a)、15 Hz(b)、20 Hz(c)、25 Hz(d)单频振幅属性值直方图
Fig.10  盒1段含气井与不含气井井位处10 Hz(a)、15 Hz(b)、20 Hz(c)、25 Hz(d)积分振幅属性直方图
Fig.11  盒1段含气井与不含气井井位处低频衰减梯度直方图(a)与高频衰减梯度属性直方图(b)
Fig.12  门槛值内25 Hz积分振幅、低频衰减梯度、高频衰减梯度和10 Hz的单频振幅属性交会流程
Fig.13  盒1段气水柱子与频谱差异交会分析平面叠合图
[1] Fatti J L, Smith G C, Vail P J, et al. Detection of gas in sandstone reservoirs using AVO analysis:A 3-D seismic case history using the Geostack technique[J]. Geophysics, 1994,59(9):1362-1376.
doi: 10.1190/1.1443695
[2] White R S. Seismic bright spots in the Gulf of Oman[J]. Earth and Planetary Science Letters, 1977,37(1):29-37.
doi: 10.1016/0012-821X(77)90143-1
[3] Odebeatu E, Zhang J, Chapman M, et al. Application of spectral decomposition to detection of dispersion anomalies associated with gas saturation[J]. The Leading Edge, 2006,25(2):206-210.
doi: 10.1190/1.2172314
[4] Båth , Markus . Spectral analysis in geophysics[M]. New York:Elsevier, 1974.
[5] Al Sadi H N. Dependence of theP-wave amplitude spectrum on focal depth[J]. Pure and Applied Geophysics, 1973,104(1):439-452.
doi: 10.1007/BF00875887
[6] Partyka G, Gridley J, Lopez J. Interpretational applications of spectral decomposition in reservoir characterization[J]. The Leading Edge, 1999,18(3):353-360.
doi: 10.1190/1.1438295
[7] Marfurt K J, Kirlin R L. Narrow-band spectral analysis and thin-bed tuning[J]. Geophysics, 2001,66(4):1274-1283.
doi: 10.1190/1.1487075
[8] Valle García R D, Ramírez Cruz L. Spectral attributes for attenuation analysis in a fractured carbonate reservoir[J]. The Leading Edge, 2002,21(10):1038-1041.
doi: 10.1190/1.1518443
[9] Burnett M D, Castagna J P, Méndez Hernández E, et al. Application of spectral decomposition to gas basins in Mexico[J]. The Leading Edge, 2003,22(11):1130-1134.
doi: 10.1190/1.1634918
[10] Castagna J P, Sun S, Siegfried R W. Instantaneous spectral analysis:Detection of low-frequency shadows associated with hydrocarbons[J]. The Leading Edge, 2003,22(2):120-127.
doi: 10.1190/1.1559038
[11] 刁瑞, 李振春, 韩文功, 等. 基于广义S变换的吸收衰减分析技术在油气识别中的应用[J]. 石油物探, 2011,50(3):260-265.
[11] Diao R, Li Z C, Han W G, et al. Application of absorption and attenuation analysis technique based on generalized Stransform for hydrocarbon identification[J]. Geophysical Prospecting for Petroleum, 2011,50(3):260-265.
[12] Mitchell J T, Derzhi N, Lichman E, et al. Energy absorption analysis:A case study[C]// SEG Technical Program Expanded Abstracts 1996,1996:1785-1788.
[13] 赵力民, 彭苏萍, 康洪全, 等. 利用地震频谱比进行河道砂体预测[J]. 中国石油勘探, 2003,8(4):60-62.
[13] Zhao L M, Peng S P, Kang H Q, et al. Application of seismic ratio method to predict channel sandbody[J]. China Petroleum Exploration, 2003,8(4):60-62.
[14] 边树涛, 董艳蕾, 郑浚茂. 地震波频谱衰减检测天然气技术应用研究[J]. 石油地球物理勘探, 2007,42(3):296-300.
[14] Bian S T, Dong Y L, Zhen J M. Study on application of seismic frequency spectrum attenuation to detect natural gas[J]. Oil Geophysical Prospecting, 2007,42(3):296-300.
[15] Goloshubin G M, Korneev V A. Seismic low‐frequency effects from fluid‐saturated reservoir[C]// SEG Technical Program Expanded Abstracts, 2000:1671-1674.
[16] Wu X Y, Liu T Y. Seismic spectral decomposition and analysis based on Wigner-Ville distribution for sandstone reservoir characterization in West Sichuan depression[J]. Journal of Geophysics and Engineering, 2010,7(2):126-134.
doi: 10.1088/1742-2132/7/2/002
[17] Li Y, Zheng X, Zhang Y. High-frequency anomalies in carbonate reservoir characterization using spectral decomposition[J]. Geophysics, 2011,76(3):V47-V57.
doi: 10.1190/1.3554383
[18] 郭见乐, 唐文榜, 李宗杰, 等. 薄储层(体)含油气性识别的HFC技术及其应用研究[J]. 石油物探, 2013,52(1):79-88.
[18] Guo J L, Tang W B, Li Z J, et al. The harmonic frequencies characteristics(HFC) analysis for identifying and predicting hydrocarbon in thin reservoir strata(bodies)[J]. Geophysical Prospecting for Petroleum, 2013,52(1):79-88.
[19] 李宗杰, 刘群, 李海英, 等. 塔河油田缝洞储集体油水识别的谐频特征分析技术应用研究[J]. 石油物探, 2013,53(4):484-490.
[19] Li Z J, Liu Q, Li H Y, et al. Application of HFC technique for hydrocarbon identification infracture-cave reservoirs of Lower-Ordoician carbonate in Tahe Oilfeild[J]. Geophysical Prospecting for Petroleum, 2013,53(4):484-490.
[20] 张在金, 张军华, 张宏, 等. 基于时变子波谱模拟的面积差值法吸收衰减属性研究与应用[C]// SPG/SEG北京2016国际地球物理会议, 2016:115-118.
[20] Zhang Z J, Zhang J H, Zhang H, et al. The research and application of absorption attenuation attribute of area difference method based on time-varying wavelet spectrum simulation property[C]// SEG Technical Program Expanded Abstracts, 2016:115-118.
[21] 邓继新, Dehua Han, 王尚旭. 基于正演模型的储层谱分解响应特征分析[J]. 石油学报, 2008,29(4):539-543.
[21] Deng J X, Han D H, Wang S X. Analysis on spectral decomposition response of reservoir based on forward modeling[J]. Acta Petrolei Sinica, 2008,29(4):539-543.
[22] 代双和, 于京波, 袁云超, 等. 利用频谱积分属性评价碳酸盐岩储层[J]. 石油地球物理勘探, 2011,46(s1):121-127.
[22] Dai S H, Yu J B, Yuan Y C, et al. Evaluation of carbonate reservoirs by frequency spectrum integration attributes[J]. Oil Geophysical Prospecting, 2011,46(s1):121-127.
[23] 李宏伟, 王九拴, 邵林海, 等. 油气检测技术在三湖浅层生物气勘探中的应用[J]. 石油地球物理勘探, 2013,48(5):770-775.
[23] Li H W, Wang J S, Shao L H, et al. Hydrocarbon detection in biogas exploration in Sanhu Shallow[J]. Oil Geophysical Prospecting, 2013,48(5):770-775.
[24] 徐秋枫, 陈建文, 姚泉, 等. 频谱分解技术在泥页岩储层含气性预测中的应用——以柴达木盆地鱼卡凹陷为例[J]. 地质通报, 2016,35(2-3):348-355.
[24] Xu Q F, Chen J W, Yao Q, et al. Application of spectral decomposition technology to the shale reservoir prediction:A case study of Yuqia sag in Qaidam Basin[J]. Geological Bulletin of China, 2016,35(2/3):348-355.
[25] 唐文榜, 刘来祥, 樊佳方, 等. 地震可检测性分辨率研究[J]. 石油物探, 2012,51(2):107-118.
[25] Tang W B, Liu L X, Fan J F, et al. Research on seismic detectable resolution[J]. Geophysical Prospecting for Petroleum, 2012,51(2):107-118.
[26] Zeng H. Thickness imaging for high-resolution stratigraphic interpretation by linear combination and color blending of multiple-frequency panels[J]. Interpretation, 2017,5(3):T411-T422.
[27] Krehbiel S C. Trivariate attribute displays[J]. The Leading Edge, 1999,18(11):1248-1257.
[28] Ren H, Goloshubin G. Spectra crossplot[C]// SEG Technical Program Expanded Abstracts, 2007,26(1):1562-156.
[29] Wu X C, Pu R H, Wang D H, et al. Three-dimensional seismic analysis of Late Paleozoic coal-bearing series reflections in the Hangjinqi,North Ordos Basin,China[J]. Interpretation, 2019,7(1):T67-T82.
[1] 王迪, 张益明, 牛聪, 黄饶, 韩利. 压制孔隙影响的流体敏感因子优选及其在烃类检测中的应用[J]. 物探与化探, 2021, 45(6): 1402-1408.
[2] 张平平, 秦德海. 含烃亮点属性在渤海黄河口凹陷明化镇组油气识别中的应用[J]. 物探与化探, 2017, 41(4): 684-688.
[3] 王建青, 杨晓东, 田忠斌, 申有义. 基于地震频谱属性的煤层厚度预测方法[J]. 物探与化探, 2017, 41(2): 364-368.
[4] 陈殿远, 陈志宏, 刘仕友, 陈雪菲. 地震频率域信息在涠西南地区勘探中的应用[J]. 物探与化探, 2013, 37(3): 467-472.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com