Please wait a minute...
E-mail Alert Rss
 
物探与化探  2015, Vol. 39 Issue (S1): 53-57    DOI: 10.11720/wtyht.2015.S1.12
  国家高技术研究发展计划项目(2011AA060501)专题 本期目录 | 过刊浏览 | 高级检索 |
冷原子干涉型重力仪中系统误差的快速获取
程冰1,2, 王兆英1, 许翱鹏1, 王启宇1, 林强1,2
1. 浙江大学光学研究所, 杭州 310027;
2. 浙江工业大学理学院, 杭州 310023
Rapid extraction of the systematic error in the cold-atom gravimeter
CHENG Bing1,2, WANG Zhao-Ying1, XU Ao-Peng1, WANG Qi-Yu1, LIN Qiang1,2
1. Institute of Optics, Zhejiang University, Hangzhou 310027;
2. College of Science, Zhejiang University of Technology, Hangzhou 310023
全文: PDF(658 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 

一般冷原子干涉仪是在固定拉曼脉冲时间间隔T的情况下,通过扫描拉曼激光的啁啾率获得原子干涉条纹.如果要绘制出相移随着T的变化,需要较长的测量时间.本文提出了用相位解调法快速提取冷原子干涉仪的相移的方法,通过此法,可以快速获得干涉仪在整个干涉区域的系统误差,并可以快速推断出在某些特定干涉时间内导致系统发生相位移动的潜在因素.进一步,我们在实验上通过这种相位解调法快速提取出了由于二阶塞曼效应引起的干涉仪的系统误差.实验结果与理论预测相吻合,并且与通过原子干涉条纹计算出来的相位移动一致.

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
Abstract

Generally, the phase of the cold-atom interferometer is extracted from the atomic interference fringe, which can be obtained by scanning the chirp rate of the Raman lasers at a given interrogation time T. If the phase shift for each T is mapped with a series of measurements, the extraction time is limited by the protocol of each T measurement, and therefore increases dramatically when fine mapping is conducted with a small step of T. In this paper, the authors present a new method for rapid extraction of the phase shift via phase demodulation. By using this method, the systematic shifts can be mapped though the whole interference area. This method enables quick diagnostics of the potential cause of the phase shift in specific time. It is demonstrated experimentally that this method is effective for the evaluation of the systematic errors of the cold atomic gravimeter. The systematic phase error induced by the quadratic Zeeman effect in the free-falling region is extracted by this method. The measured results correspond well with the theoretic prediction and also agree with the results obtained by the fringe fitting method for each T.

收稿日期: 2015-12-04      出版日期: 2015-12-31
:  P631  
基金资助:

国家高技术研究发展计划"863计划"项目(2011AA060504);国家自然科学基金项目(11174249,61475139)

作者简介: 程冰(1986-),男,浙江大学博士毕业,现从事冷原子重力仪、原子干涉仪等方面的研究工作.
引用本文:   
程冰, 王兆英, 许翱鹏, 王启宇, 林强. 冷原子干涉型重力仪中系统误差的快速获取[J]. 物探与化探, 2015, 39(S1): 53-57.
CHENG Bing, WANG Zhao-Ying, XU Ao-Peng, WANG Qi-Yu, LIN Qiang. Rapid extraction of the systematic error in the cold-atom gravimeter. Geophysical and Geochemical Exploration, 2015, 39(S1): 53-57.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2015.S1.12      或      https://www.wutanyuhuatan.com/CN/Y2015/V39/IS1/53

[1] CladéP,De Mirandes E,Cadoret M,et al.Determination of the fine structure constant based on Bloch oscillations of ultracold atoms in a vertical optical lattice[J]. Physical review letters,2006,96(3):033001.

[2] Fixler J B,Foster G T,McGuirk J M,et al.Atom interferometer measurement of the Newtonian constant of gravity[J].Science,2007,315(5808):74-77.

[3] Dimopoulos S,Graham P W,Hogan J M,et al.Testing general relativity with atom interferometry[J]. Physical review letters,2007,98(11):111-102.

[4] Lamporesi G,Bertoldi A,Cacciapuoti L,et al.Determination of the Newtonian gravitational constant using atom interferometry[J]. Physical Review Letters,2008,100(5): 050801.

[5] Dimopoulos S,Graham P W,Hogan J M,et al.Gravitational wave detection with atom interferometry[J]. Physics Letters B, 2009, 678(1): 37-40.

[6] Hohensee M A,Chu S,Peters A,et al.Equivalence principle and gravitational redshift[J]. Physical review letters, 2011, 106(15): 151102.

[7] Kasevic M,Chu S.Measurement of the gravitational acceleration of an atom with a light-pulse atom interferometer[J]. Applied Physics B, 1992, 54(5): 321-332.

[8] Le Gout J,Mehlstubler T E,Kim J,et al.Limits to the sensitivity of a low noise compact atomic gravimeter[J]. Applied Physics B, 2008, 92(2): 133-144.

[9] Müller H,Chiow S,Herrmann S,et al.Atom-interferometry tests of the isotropy of post-Newtonian gravity[J]. Physical Review Letters, 2008, 100(3): 031101.

[10] Gustavson T L,Bouyer P,Kasevich M A.Precision rotation measurements with an atom interferometer gyroscope[J]. Physical Review Letters, 1997, 78(11): 2046.

[11] Snadden M J,McGuirk J M,Bouyer P,et al.Measurement of the Earth's gravity gradient with an atom interferometer-based gravity gradiometer[J]. Physical Review Letters, 1998, 81(5): 971.

[12] McGuirk J M,Foster G T,Fixler J B,et al. Sensitive absolute-gravity gradiometry using atom interferometry[J]. Physical Review A, 2002, 65(3): 033608.

[13] Hu Z K,Sun B L,Duan X C,et al.Demonstration of an ultrahigh-sensitivity atom-interferometry absolute gravimeter[J]. Physical Review A, 2013, 88(4): 043610.

[14] Bodart Q,Merlet S,Malossi N,et al.A cold atom pyramidal gravimeter with a single laser beam[J]. Applied Physics Letters, 2010, 96(13): 134101.

[15] Merlet S,Bodart Q,Malossi N,et al.Comparison between two mobile absolute gravimeters: optical versus atomic interferometers[J]. Metrologia, 2010, 47(4): L9.

[16] Bidel Y,Carraz O,Charrière R,et al.Compact cold atom gravimeter for field applications[J]. Applied Physics Letters, 2013, 102(14): 144107.

[17] Hauth M,Freier C,Schkolnik V,et al.First gravity measurements using the mobile atom interferometer GAIN[J]. Applied Physics B, 2013, 113(1): 49-55.

[18] Peters A,Chung K Y,Chu S.High-precision gravity measurements using atom interferometry[J]. Metrologia, 2001, 38(1): 25.

[19] Louchet-Chauvet A,Farah T,Bodart Q,et al.The influence of transverse motion within an atomic gravimeter[J]. New Journal of Physics, 2011, 13(6): 065025.

[20] Merlet S,Le Gout J,Bodart Q,et al.Operating an atom interferometer beyond its linear range[J]. Metrologia, 2009, 46(1): 87.

[21] Duan X C,Zhou M K,Mao D K,et al.Operating an atom-interferometry-based gravity gradiometer by the dual-fringe-locking method[J]. Physical Review A, 2014, 90(2): 023617.

[22] Stockton J K,Wu X,Kasevich M A.Bayesian estimation of differential interferometer phase[J]. Physical Review A, 2007, 76(3): 033613.

[23] Foster G T,Fixler J B,McGuirk J M,et al.Method of phase extraction between coupled atom interferometers using ellipse-specific fitting[J]. Optics letters, 2002, 27(11): 951-953.

[24] Chen X,Zhong J,Song H,et al.Proportional-scanning-phase method to suppress the vibrational noise in nonisotope dual-atom-interferometer-based weak-equivalence-principle-test experiments[J]. Physical Review A, 2014, 90(2): 023609.

[25] Wu B,Wang Z Y,Cheng B,et al.Accurate measurement of the quadratic Zeeman coefficient of 87Rb clock transition based on the Ramsey atom interferometer[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 2013, 47(1): 015001.

[1] 陈秀娟, 刘之的, 刘宇羲, 柴慧强, 王勇. 致密储层孔隙结构研究综述[J]. 物探与化探, 2022, 46(1): 22-31.
[2] 肖关华, 张伟, 陈恒春, 卓武, 王艳君, 任丽莹. 浅层地震技术在济南地下空间探测中的应用[J]. 物探与化探, 2022, 46(1): 96-103.
[3] 石磊, 管耀, 冯进, 高慧, 邱欣卫, 阙晓铭. 基于多级次流动单元的砂砾岩储层分类渗透率评价方法——以陆丰油田古近系文昌组W53油藏为例[J]. 物探与化探, 2022, 46(1): 78-86.
[4] 陈大磊, 王润生, 贺春艳, 王珣, 尹召凯, 于嘉宾. 综合地球物理探测在深部空间结构中的应用——以胶东金矿集区为例[J]. 物探与化探, 2022, 46(1): 70-77.
[5] 周能, 邓可晴, 庄文英. 基于线性放电法的多道脉冲幅度分析器设计[J]. 物探与化探, 2022, 46(1): 221-228.
[6] 吴燕民, 彭正辉, 元勇虎, 朱今祥, 刘闯, 葛薇, 凌国平. 一种基于差分接收的电磁感应阵列探头的设计与实现[J]. 物探与化探, 2022, 46(1): 214-220.
[7] 王猛, 刘媛媛, 王大勇, 董根旺, 田亮, 黄金辉, 林曼曼. 无人机航磁测量在荒漠戈壁地区的应用效果分析[J]. 物探与化探, 2022, 46(1): 206-213.
[8] 张化鹏, 钱卫, 刘瑾, 武立林, 宋泽卓. 基于伪随机信号的磁电法渗漏模型试验[J]. 物探与化探, 2022, 46(1): 198-205.
[9] 张建智, 胡富杭, 刘海啸, 邢国章. 煤矿老窑采空区地—井TEM响应特征[J]. 物探与化探, 2022, 46(1): 191-197.
[10] 张宇哲, 孟麟, 王智. 基于Gmsh的起伏地形下井—地直流电法正演模拟[J]. 物探与化探, 2022, 46(1): 182-190.
[11] 马德志, 王炜, 金明霞, 王海昆, 张明强. 海上地震勘探斜缆采集中鬼波产生机理及压制效果分析[J]. 物探与化探, 2022, 46(1): 175-181.
[12] 张洁. 基于拉伸率的3DVSP道集切除技术及应用[J]. 物探与化探, 2022, 46(1): 169-174.
[13] 丁骁, 莫思特, 李碧雄, 黄华. 混凝土内部裂缝对电磁波传输特性参数的影响[J]. 物探与化探, 2022, 46(1): 160-168.
[14] 崔瑞康, 孙建孟, 刘行军, 文晓峰. 低阻页岩电阻率主控因素研究[J]. 物探与化探, 2022, 46(1): 150-159.
[15] 陈亮, 付立恒, 蔡冻, 李凡, 李振宇, 鲁恺. 基于模拟退火法的磁共振测深多源谐波噪声压制方法[J]. 物探与化探, 2022, 46(1): 141-149.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com