Please wait a minute...
E-mail Alert Rss
 
物探与化探  2015, Vol. 39 Issue (6): 1150-1155    DOI: 10.11720/wtyht.2015.6.09
  方法技术研究 本期目录 | 过刊浏览 | 高级检索 |
均匀大地CSAMT静态效应模拟及其特征研究
胡瑞华, 林君, 孙彩堂, 刘长胜, 周逢道
吉林大学仪器科学与电气工程学院, 吉林长春 130061
Simulation of CSAMT static effect and research on its characteristics in homogeneous earth
HU Rui-Hua, LIN Jun, SUN Cai-Tang, LIU Chang-Sheng, ZHOU Feng-Dao
College of Instrument Science and Electrical Engineering, Jilin University, Changchun 130061, China
全文: PDF(2756 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

静态效应是深部探测噪声之一。为深入认识静态效应,以均匀大地为背景,卡尼亚视电阻率为解释参数,分别模拟旁侧和轴侧两种观测方式中含有静态效应的地表响应,得到以下结论:(1)两种观测方式中的静态效应特征表现一致。(2)异常体正上方的测点受干扰程度最大,测点离异常体越远,受干扰程度越小。(3)低阻异常体引起干扰区域的等值线下凹,电阻率越低下凹越明显,高阻异常体引起干扰区域的等值线上凸,但增大异常体的电阻率,等值线上凸的变化并不明显;无论是低阻异常还是高阻异常都会引起干扰区域的中高频段等值线近乎直立。(4)低阻体的静态效应使低频段的标准曲线平行下移,但在中高频段标准曲线平行下移程度与低阻体的电阻率有关,电阻率越低,标准曲线平行下移程度越差,这是由于电阻率较低的异常体在中高频段有较强的电磁感应异常,这种异常被叠加到了静态效应中;而高阻体的静态效应使标准曲线在整个频段上平行上移。研究结果可为静态效应的识别及校正算法的改进提供参考,具有一定的理论和应用价值。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
Abstract

Uneven electric body near the ground surface interferes the target field, which is called static effect that is regarded as one of the noises of deep exploration. In order to deeply understand the static effect, the authors simulated respectively the ground surface responses of axial and asides observation methods on the conditions of taking homogeneous earth as model background and Cagniard apparent resistivity as explanation parameter. Some conclusions have been reached:(1) The effects of static characteristics of the two observation methods are consistent. (2) The interference is maximum for measuring points above the anomaly body. On the contrary, the interference is minimum for the points which stay away from the anomaly body. (3) Low resistivity abnormal body causes the contours of the interference area to become concave. The resistivity is lower. High resistivity abnormal body causes the contours of the interference area to become convex. However, changes of contours into convexity are not obvious although the resistivity of anomaly body is enlarged. Both low resistivity abnormal body and high one cause the mid-low frequency contours to become nearly erect in the interference area; (4) The static effect of low resistivity causes the standard curve to be parallel downward in mid-low frequency, but in high frequency the extent of the standard curve paralleling downward depends on low resistivity value, the lower the resistivity is, the less parallel the standard curve downward is, because of stronger electromagnetic induction for lower abnormal body which is superimposed upon the static effect. However, the static effect of high resistivity causes the standard curve parallel upward in full frequency, which is consistent with previous conclusions. The results can provide a reference for the identification and improvement of static effect correction algorithm and hence has a certain theoretical and practical value.

收稿日期: 2014-11-26      出版日期: 2015-12-10
:  P631  
基金资助:

教育部和财政部联合项目(OSR-02-01);吉林大学青年基金项目(4305050102RV)

作者简介: 胡瑞华(1974-),男,博士,主要从事电磁法正反演与应用研究。E-mail:hurh@jlu.edu.cn
引用本文:   
胡瑞华, 林君, 孙彩堂, 刘长胜, 周逢道. 均匀大地CSAMT静态效应模拟及其特征研究[J]. 物探与化探, 2015, 39(6): 1150-1155.
HU Rui-Hua, LIN Jun, SUN Cai-Tang, LIU Chang-Sheng, ZHOU Feng-Dao. Simulation of CSAMT static effect and research on its characteristics in homogeneous earth. Geophysical and Geochemical Exploration, 2015, 39(6): 1150-1155.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2015.6.09      或      https://www.wutanyuhuatan.com/CN/Y2015/V39/I6/1150

[1] Nabighian M N. Electromagnetic method in applied geohpysics(1):Theory[C]//Society of Exploration Geophysicists. Beijing:Geological Publishing House, 1992.

[2] 朴化荣.电磁测深原理[M].北京:地质出版社,1990.

[3] Cagniard L. Basic theory of the magnetotelluric methods of geophysical prospecting[J].Geophysics,1953,18:605-635.

[4] 汤井田,何继善.可控源音频大地电磁法及其应用[M].长沙:中南大学出版社,2005.

[5] 陈明生.对频率电磁测深静态效应问题的再探讨[J].煤田地质与勘探, 2013,41(6):74-77.

[6] Zhdanov M S,Golubev N G,Spiehak V V. The construction of effective methods for electromagnetic modeling[J]. Geophysics,1982,68:623-638.

[7] 屈有恒,张贵宾,晋风明.倾斜线源的三维电场数值模拟研究[J].物探化探计算技术, 2007, 29(5):431-435.

[8] 孙娅,何展翔,柳建新,等.长导线源频率域电磁测深场源静态位移的模拟研究[J].石油地球物理勘探, 2011, 46(1):149-154.

[9] Sternberg B K,Wshburne J C.Correction for the static shift in Magnetotellutic using transient elecetromagnetic soundings[J]. Geophysics,1988,53(11):1459-1468.

[10] De Groot-Hedlin C.Removal of static shift in two dimensions by regulariged inversion[J]. Geophysics,1991,56:2102-2106

[11] 杨妮妮,王志宏.CSAMT测量的静态效应研究[J].河南科学,2009,27(4):433-436.

[12] 陈辉,王春庆,雷达,等.CSAMT法静态效应模拟及其校正方法对比[J].物探化探计算技术,2007,29(S1):64-67.

[13] 黄兆辉,底青云,候胜利. CSAMT的静态效应校正及应用[J].地球物理学进展,2006,21(4):1290-1295.

[14] 谢海军,陈明生,闫述.利用小波分析压制静态效应[J].煤田地质与勘探,1998,26(4):61-65.

[15] 闫述,陈明生.频率域电磁测深的静态偏移及校正方法[J].石油地球物理勘探,1996,31(2):238-247.

[16] 罗延钟,何展翔,马瑞伍,等.可控源音频大地电磁法的静态效应校正[J].物探与化探,1991,15(3):196-202.

[17] Johansen H K, Sorensen K I. Fast Hankel transforms[J]. Geophysical Prospecting,1979,27:876-901.

[18] Chave A D. Numerial integration of related Hankel transforms by quadrature and continued fraction expansion[J].Geophysics,1983,48:1671-1686.

[19] 赵广茂,李志华,朱旭东,等.长导线源CSAMT一维正演研究[J].铁道工程学报,2010,143(8):21-24.

[20] 胡瑞华,林君,孙彩堂,等.电偶极子切分算法研究[J].物探化探计算技术,2014,36(4):389-393.

[21] 沈金松.用交错网格有限差分计算三维频率域电磁响应[J].地球物理学报,2003,(2):281-288.

[1] 陈秀娟, 刘之的, 刘宇羲, 柴慧强, 王勇. 致密储层孔隙结构研究综述[J]. 物探与化探, 2022, 46(1): 22-31.
[2] 肖关华, 张伟, 陈恒春, 卓武, 王艳君, 任丽莹. 浅层地震技术在济南地下空间探测中的应用[J]. 物探与化探, 2022, 46(1): 96-103.
[3] 石磊, 管耀, 冯进, 高慧, 邱欣卫, 阙晓铭. 基于多级次流动单元的砂砾岩储层分类渗透率评价方法——以陆丰油田古近系文昌组W53油藏为例[J]. 物探与化探, 2022, 46(1): 78-86.
[4] 陈大磊, 王润生, 贺春艳, 王珣, 尹召凯, 于嘉宾. 综合地球物理探测在深部空间结构中的应用——以胶东金矿集区为例[J]. 物探与化探, 2022, 46(1): 70-77.
[5] 周能, 邓可晴, 庄文英. 基于线性放电法的多道脉冲幅度分析器设计[J]. 物探与化探, 2022, 46(1): 221-228.
[6] 吴燕民, 彭正辉, 元勇虎, 朱今祥, 刘闯, 葛薇, 凌国平. 一种基于差分接收的电磁感应阵列探头的设计与实现[J]. 物探与化探, 2022, 46(1): 214-220.
[7] 王猛, 刘媛媛, 王大勇, 董根旺, 田亮, 黄金辉, 林曼曼. 无人机航磁测量在荒漠戈壁地区的应用效果分析[J]. 物探与化探, 2022, 46(1): 206-213.
[8] 张化鹏, 钱卫, 刘瑾, 武立林, 宋泽卓. 基于伪随机信号的磁电法渗漏模型试验[J]. 物探与化探, 2022, 46(1): 198-205.
[9] 张建智, 胡富杭, 刘海啸, 邢国章. 煤矿老窑采空区地—井TEM响应特征[J]. 物探与化探, 2022, 46(1): 191-197.
[10] 张宇哲, 孟麟, 王智. 基于Gmsh的起伏地形下井—地直流电法正演模拟[J]. 物探与化探, 2022, 46(1): 182-190.
[11] 马德志, 王炜, 金明霞, 王海昆, 张明强. 海上地震勘探斜缆采集中鬼波产生机理及压制效果分析[J]. 物探与化探, 2022, 46(1): 175-181.
[12] 张洁. 基于拉伸率的3DVSP道集切除技术及应用[J]. 物探与化探, 2022, 46(1): 169-174.
[13] 丁骁, 莫思特, 李碧雄, 黄华. 混凝土内部裂缝对电磁波传输特性参数的影响[J]. 物探与化探, 2022, 46(1): 160-168.
[14] 崔瑞康, 孙建孟, 刘行军, 文晓峰. 低阻页岩电阻率主控因素研究[J]. 物探与化探, 2022, 46(1): 150-159.
[15] 陈亮, 付立恒, 蔡冻, 李凡, 李振宇, 鲁恺. 基于模拟退火法的磁共振测深多源谐波噪声压制方法[J]. 物探与化探, 2022, 46(1): 141-149.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com