Please wait a minute...
E-mail Alert Rss
 
物探与化探  2013, Vol. 37 Issue (6): 1125-1132    DOI: 10.11720/j.issn.1000-8918.2013.6.31
  计算技术与信息处理 本期目录 | 过刊浏览 | 高级检索 |
大地电磁阻抗张量旋转方法和曲线圆滑方法的比较
赵维俊, 孙中任
沈阳地质矿产研究所, 辽宁 沈阳 110034
A COMPARATIVE STUDY OF MAGNETOTELLURIC IMPEDANCE TENSOR ROTATION AND CURVE SMOOTHING METHODS
ZHAO Wei-jun, SUN Zhong-ren
Shenyang Institute of Geology and Mineral Resources, Shenyang 110034, China
全文: PDF(1424 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 

随着三维深部地质填图和含页岩气盆地潜力的评价项目展开,大地电磁方法的重要性越来越突显。大地电磁资料处理和解释中,至今还存在几个挑战性难题,例如阻抗张量旋转、TE和TM模式识别、静态矫正、TE和TM模式选择二维反演问题。从WinGlink软件大地电磁模块出发,使用5种阻抗旋转方法和3种数据圆滑方法处理在内蒙古扎鲁特旗采集的大地电磁数据。以数据质量不同的3个测点的处理结果为依据,对各种旋转方法和圆滑方法进行详细评价,数据极化图显示地下结构模型是复杂的三维结构。对这些方法的比较研究,对三维结构下大地电磁数据处理,特别是对使用WinGlink软件处理大地电磁数据具有重要现实意义。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
Abstract

In recent years, with the implementation of three-dimensional deep geological mapping and shale gas bearing basin prospective evaluation, magnetotelluric method, as one of geophysical methods, has become more and more important. There are a finite number of challenging problems in magnetotelluric data processing and interpretation such as impedance tensor rotation, TE and TM mode identification, static distortion correction, and selection of TE and TM for 2D inversion. Based on magnetotelluric module in WinGlink software, the authors adopted five impedance tensor rotation methods and three curve smoothing methods to process the magnetotelluric data gathered in Jarud Banner, Inner Mongolia. Three stations with different qualities in one profile were chosen to process. The results of five rotation methods and three smoothing methods were analyzed and assessed. Polar diagram analysis of three stations showed that the geological models under themselves were three-dimensional. The comparative study is critical for three-dimensional geological models, and is especially much instructive to the processing and interpretation of magnetotelluric data by using WingGlink software.

收稿日期: 2012-09-30      出版日期: 2013-12-10
:  P631  
基金资助:

中国地质调查局项目(编号:1212011220242)

作者简介: 赵维俊 (1975- ),男,2008 年毕业于韩国江原大学,获地球物理学博士学位,现主要从事应用地球物理论与实践研究。Email:charlesweijun@gmail.com
引用本文:   
赵维俊, 孙中任. 大地电磁阻抗张量旋转方法和曲线圆滑方法的比较[J]. 物探与化探, 2013, 37(6): 1125-1132.
ZHAO Wei-jun, SUN Zhong-ren. A COMPARATIVE STUDY OF MAGNETOTELLURIC IMPEDANCE TENSOR ROTATION AND CURVE SMOOTHING METHODS. Geophysical and Geochemical Exploration, 2013, 37(6): 1125-1132.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/j.issn.1000-8918.2013.6.31      或      https://www.wutanyuhuatan.com/CN/Y2013/V37/I6/1125

[1] Simpson F, Bahr K. Practical magnetotellurics[M].Cambridge University Press, 2005.

[2] Berdichevsky M N, Dmitriev V I. Models and methods of magnetotellurics[M].Springer Press, 2008.

[3] Vozoff K. The magnetotelluric method in the exploration of sedimentary basins[J].Geophysics, 1972, 37 (1) :98-141.

[4] Livelybrooks D, Mareschal M, Blais E, et al. Magnetotelluric delineation of the Trillabelle massive sulfide body in Sudbury, Ontario[J].Geophysics, 1996, 61 (4) :971-986.

[5] Stanley W D, Boehl J E, Bostick F X, et al. Geothermal significance of magnetotelluric sounding in the Eastern Snake River Plain-Yellowstone Region[J].Journal of Geophysical Research, 1977, 82 (17) :2501-2514.

[6] 陈小斌, 赵国泽, 马宵.关于MT二维反演中数据旋转方向的选择问题初探[J].石油地球物理勘探, 2008, 43 (1) :113-128.

[7] 蔡军涛, 陈小斌.大地电磁资料精细处理和二维反演解释技术研究 (二) :反演数据极化模式选择[J].地球物理学报, 2010, 53 (11) :2703-2714.

[8] 贺春艳, 郭秋峰.应用Winglink进行大地电磁测深极化模式识别的研究[G]//山东地球物理六十年.青岛:中国海洋大学出版社, 2010:557-564.

[9] Christopherson K R, Jones A, Mackie R. Magnetotellurics for natural resources from acquisition through interpretation[M].SEG publishing, 2002.

[10] Bahr K. Interpretation of the magnetotelluric impedance tensor: regional induction and local telluric distortion[J].Journal of Geophysics, 1988, 62:119-127.

[11] Bahr K. Geological noise in magnetotelluric data: a classification of distortion type[J].Physics of Earth planet interior, 1991, 66:24-38.

[12] Pracser E, Szarka L. A correction to Bahr's"phase deviation" method for tensor decomposition[J].Earth Planets Space, 1999, 51:1019-1022.

[13] Groom R W, Bailey R C. Decomposition of magnetotelluric impedance tensor in the presence of local three-dimensional galvanic distortion[J].Journal of Geophysical Research, 1989, 94 (B2) :1913-1925.

[14] Groom R W, Bailey R C. Analytic investigations of the effects of near-surface three-dimensional galvanic scatterers on MT tensor decompositions[J].Geophysics, 1991, 56 (4) :496-518.

[15] Mati A, Queralt P, Joes A G, et al.Improving Bahr's invariant parameters using the WAL approach[J].Geophysical Journal International, 2005, 163 (1) :38-41.

[16] Marti A, Queralt P, Ledo J. WALDIM: A code for the dimensionality analysis of magnetotelluric data using the rotational invariant of the Magnetotellurics[J].Computers and Geosciences, 2009, 35:2295-2303.

[17] Utada H, Munekane H. On galvanic distortion of regional three-dimensional magnetotelluric impedance[J].Geophysical Journal International, 2000, 140 (2) :385-398.

[18] Caldwell T G, Bibby H M, Brown C. The magnetotelluric phase tensor[J].Geophysical Journal International, 2004, 158 (2) :457-469.

[19] 蔡军涛, 陈小斌, 赵国泽.大地电磁资料精细处理和二维反演解释技术研究 (一) :阻抗张量分解与构造维性分析[J].地球物理学报, 2010, 53 (10) :2516-2526.

[20] MT/EMAP Data Interchange Standard[S].SEG publishing, 1991.

[21] LaTorraca G A, Madden T R, Korringa J. An analysis of the magnetotelluric impedance for three-dimensional conductivity structures[J].Geophysics, 1986, 51 (9) : 1819-1829.

[22] Sutarrno D, Vozoff K. Phase-smoothed robust M-estimation of magnetotelluric impedance functions[J].Geophysics, 1991, 56 (12) :1999-2007.

[23] Parker R L. The inverse problem of electromagnetic induction: existence and construction of solutions based on incomplete data[J].Journal of Geophysical Research, 1980, 85 (B8) :4421-4428.

[24] Beamish D, Travassos J M. The study of D+ solution in magnetotelluric interpretation[J].Journal of Applied Geophysics, 1992, 29 (1) :1-19.

[25] Press W H, Teukolsky S A, Vetterling W T, et al. Numerical recipes in C++: the art of scientific computing[M].Cambridge University Press, 2002.

[26] Park S K, Biasi G P, Mackie R L, et al. Magnetotelluric evidence for crustal suture zones bounding the southern Great Valley, California[J].Journal of Geophysical Research, 1991, 96 (B1) :353-376.

[1] 陈秀娟, 刘之的, 刘宇羲, 柴慧强, 王勇. 致密储层孔隙结构研究综述[J]. 物探与化探, 2022, 46(1): 22-31.
[2] 肖关华, 张伟, 陈恒春, 卓武, 王艳君, 任丽莹. 浅层地震技术在济南地下空间探测中的应用[J]. 物探与化探, 2022, 46(1): 96-103.
[3] 石磊, 管耀, 冯进, 高慧, 邱欣卫, 阙晓铭. 基于多级次流动单元的砂砾岩储层分类渗透率评价方法——以陆丰油田古近系文昌组W53油藏为例[J]. 物探与化探, 2022, 46(1): 78-86.
[4] 陈大磊, 王润生, 贺春艳, 王珣, 尹召凯, 于嘉宾. 综合地球物理探测在深部空间结构中的应用——以胶东金矿集区为例[J]. 物探与化探, 2022, 46(1): 70-77.
[5] 周能, 邓可晴, 庄文英. 基于线性放电法的多道脉冲幅度分析器设计[J]. 物探与化探, 2022, 46(1): 221-228.
[6] 吴燕民, 彭正辉, 元勇虎, 朱今祥, 刘闯, 葛薇, 凌国平. 一种基于差分接收的电磁感应阵列探头的设计与实现[J]. 物探与化探, 2022, 46(1): 214-220.
[7] 王猛, 刘媛媛, 王大勇, 董根旺, 田亮, 黄金辉, 林曼曼. 无人机航磁测量在荒漠戈壁地区的应用效果分析[J]. 物探与化探, 2022, 46(1): 206-213.
[8] 张化鹏, 钱卫, 刘瑾, 武立林, 宋泽卓. 基于伪随机信号的磁电法渗漏模型试验[J]. 物探与化探, 2022, 46(1): 198-205.
[9] 张建智, 胡富杭, 刘海啸, 邢国章. 煤矿老窑采空区地—井TEM响应特征[J]. 物探与化探, 2022, 46(1): 191-197.
[10] 张宇哲, 孟麟, 王智. 基于Gmsh的起伏地形下井—地直流电法正演模拟[J]. 物探与化探, 2022, 46(1): 182-190.
[11] 马德志, 王炜, 金明霞, 王海昆, 张明强. 海上地震勘探斜缆采集中鬼波产生机理及压制效果分析[J]. 物探与化探, 2022, 46(1): 175-181.
[12] 张洁. 基于拉伸率的3DVSP道集切除技术及应用[J]. 物探与化探, 2022, 46(1): 169-174.
[13] 丁骁, 莫思特, 李碧雄, 黄华. 混凝土内部裂缝对电磁波传输特性参数的影响[J]. 物探与化探, 2022, 46(1): 160-168.
[14] 崔瑞康, 孙建孟, 刘行军, 文晓峰. 低阻页岩电阻率主控因素研究[J]. 物探与化探, 2022, 46(1): 150-159.
[15] 陈亮, 付立恒, 蔡冻, 李凡, 李振宇, 鲁恺. 基于模拟退火法的磁共振测深多源谐波噪声压制方法[J]. 物探与化探, 2022, 46(1): 141-149.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com