E-mail Alert Rss
 

物探与化探, 2019, 43(6): 1163-1172 doi: 10.11720/wtyht.2019.0249

地质调查·资源勘查

中蒙边界阿尔泰地区汇水域沉积物69种元素背景值特征

刘汉粮1,2,3, 聂兰仕,1,2,3, Shojin Davaa4, 王学求1,2,3, 迟清华1,2,3, Enkhtaivan Altanbagana4,5

1. 自然资源部 地球化学探测重点实验室,河北 廊坊 065000

2. 中国地质科学院 地球物理地球化学勘查研究所,河北 廊坊 065000

3. 联合国教科文组织全球尺度地球化学国际研究中心,河北 廊坊 065000

4. Geological Investigation Center, Mongolia, Ulaanbaatar-37 P.box-318

5. 中国地质大学(北京),地球科学与资源学院,北京 100083

Characteristics of background values of 69 elements in the catchment sediments of the Altay area across the boundary between China and Mongolia

LIU Han-Liang1,2,3, NIE Lan-Shi,1,2,3, Shojin Davaa4, WANG Xue-Qiu1,2,3, CHI Qing-Hua1,2,3, Enkhtaivan Altanbagana4,5

1. Key Laboratory of Geochemical Exploration, Ministry of Natural Resources, Langfang 065000, China

2. Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang 065000, China

3. UNESCO International Centre on Global-scale Geochemistry, Langfang 065000, China

4. Geological Investigation Center, Mongolia, Ulaanbaatar-37 P.box-318

5. School of the Earth Sciences and Resources, China University of Geosciences (Beijing), Beijing 100083, China

通讯作者: 聂兰仕(1979-),男,博士,高级工程师,从事境外地球化学填图研究工作。Email:nielanshi@igge.cn

责任编辑: 蒋实

收稿日期: 2019-04-29   修回日期: 2019-07-1   网络出版日期: 2019-12-20

基金资助: 国家重点研发计划项目.  2016YFC0600600
中国地质调查局地质调查项目.  DD20160116
中国地质调查局地质调查项目.  DD20190451

Received: 2019-04-29   Revised: 2019-07-1   Online: 2019-12-20

作者简介 About authors

刘汉粮(1985-),男,硕士,工程师,从事勘查地球化学研究工作。Email:liuhanliang@igge.cn 。

摘要

阿尔泰地区是重要的稀有金属、有色金属、宝石和工业白云母成矿带。以中蒙边界1∶100万地球化学填图数据为基础,采用原始数据以X±3S为临界值一次性剔除异点后的数据集的中位值作为背景值的估计值,计算了中蒙边界阿尔泰地区及6个大地构造单元的69种元素汇水域沉积物背景值,并探讨其区域分布规律和特征。研究表明,不同的大地构造单元由于不同的地质背景导致元素的地球化学分布模式也不同。这些背景值为进一步深入开发利用中蒙边界地球化学填图数据提供了可供对比的基础数据。

关键词: 69种元素背景值 ; 汇水域沉积物 ; 阿尔泰地区 ; 中蒙边界

Abstract

The Altay area is an important rare metal, non-ferrous metal, gemstone and industrial muscovite metallogenic belt. Based on the 1︰1 000 000 geochemical mapping data across the boundary between China and Mongolia, the authors calculated background values of 69 elements in the catchment sediments. The median values of the dataset after disposable eliminating outliers from the original dataset with X±3S as the critical values were used as estimated values of the geochemical background values. The results show that the geochemical distribution of elements in different geotectonic units is different due to different geological backgrounds. These background values can be used as basic data for comparison for further development and utilization of geochemical mapping data across the boundary between China and Mongolia.

Keywords: background values of 69 elements ; catchment sediments ; Altay area ; boundary between China and Mongolia

PDF (3750KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

刘汉粮, 聂兰仕, Shojin Davaa, 王学求, 迟清华, Enkhtaivan Altanbagana. 中蒙边界阿尔泰地区汇水域沉积物69种元素背景值特征. 物探与化探[J], 2019, 43(6): 1163-1172 doi:10.11720/wtyht.2019.0249

LIU Han-Liang, NIE Lan-Shi, Shojin Davaa, WANG Xue-Qiu, CHI Qing-Hua, Enkhtaivan Altanbagana. Characteristics of background values of 69 elements in the catchment sediments of the Altay area across the boundary between China and Mongolia. Geophysical and Geochemical Exploration[J], 2019, 43(6): 1163-1172 doi:10.11720/wtyht.2019.0249

0 引言

地壳、岩石和疏松沉积物的化学组成与元素丰度是人类开展地质与地球化学调查、生态环境与农业地球化学调查必不可少的参考数据。地壳及其岩石的丰度研究由来已久并取得了很多成果[1-9]。地球表层沉积物中的元素含量水平与分布特征是复杂地质过程和人类活动综合作用的结果,是进行资源勘查、环境评价、生态保护研究的重要基础资料。地球化学背景值一直被国内外学者所重视[10-12],长期以来,地球化学家们一直探索着地球表面各种沉积物的元素背景值[13-21]。这些基础数据对于研究地球表层各种沉积物中元素的地球化学行为和特征具有重要的意义,而地球化学填图是研究和绘制化学元素在空间上的分布和变化,为资源和环境问题的解决提供基础性数据和图件。

阿尔泰地区位于中国、蒙古、俄罗斯和哈萨克斯坦四国的交界处,是重要的稀有金属、有色金属、宝石和工业白云母成矿带,其构造位置处于西伯利亚板块阿尔泰陆缘活动带内,受阿尔泰早古生代深成岩浆弧和卡尔巴—锡伯渡深成岩浆及震旦纪—早古生代变质岩控制。阿尔泰地区构造岩浆活动频发且强烈,具有良好的成矿条件,矿床分布广,且与花岗岩分布有密切关系[22]

围绕国家“一带一路”战略及“两种资源、两个市场”和产业转移战略对矿产信息的重大急迫需求,利用中国领先的地球化学填图技术,采集中蒙边界地区地球化学填图数据,为资源评价和环境变化提供科学数据,为“一带一路”资源布局和富余产能转移提供决策依据。根据中蒙双方签署的“中蒙合作地球化学填图计划”,开展中蒙边界地区1:100万地球化学填图工作。笔者以中蒙边界1:100万地球化学填图数据为依托,针对中蒙边界阿尔泰地区统计了汇水域沉积物69种元素背景值,为进一步深入开发利用填图数据和资料提供可供对比的基础数据。

1 数据来源

本文收集了中蒙边界阿尔泰地区1:100万地球化学填图数据。中蒙边界阿尔泰地区1:100万地球化学填图以1:25万或1:20万地形图作为野外工作用图,以1:2.5万图幅(经度差7.5'×纬度差5.0',面积大约100 km2)作为一个采样单元网格,每个网格采集1件汇水域沉积物样品或组合样品。采样点布设兼顾样品均匀性与最有效控制汇水域,样品在50 m范围内多点组合采样(3~5个点),重复样占总样品数的5%左右,大致均匀布设在整个工作区内。所有采样点位筛取小于100目的细粒级样品,由于样品粒度细、介质均匀,因此代表性强,同时细粒级样品所具有的独特吸附特性,可以将找矿信息捕获与富集[23-26]。在中蒙边界阿尔泰地区共完成了约300 000 km2的国家尺度(1:100万)地球化学填图工作,由中国地质科学院地球物理地球化学勘查研究所和蒙古地质调查中心联合完成,涉及中国境内的新疆维吾尔自治区哈密市、昌吉回族自治州、阿尔泰地区以及蒙古的科布多省、巴彦乌列盖省、戈壁阿尔泰省等,工作范围是东西方向(经度)86°~96°,南北方向沿边境线向两国境内各延伸约100 km,共采集沉积物样品2 453件,其中中国境内采集1 165件样品,蒙古国境内采集1 288件样品。境内外所有样品均在中国地质科学院地球物理地球化学勘查研究所中心实验室加工、分析,采用地壳全元素配套分析方案及分析质量监控系统,具体配套分析方案见张勤等[27],以保障样品分析数据的一致性。

2 统计方法

2.1 背景值确定

在勘查地球化学的数据处理中,背景值的确定目前还没有一个公认的方法。通常情况下地球化学工作者采用常规的经典统计学中的算术平均值作为背景值的估计值,在计算过程中为排除离群值的影响,采用X(算术平均值)±nS(标准离差)剔除异点的方法来计算算术平均值作为背景值。但常规的经典统计学的数学前提是假设数据服从正态分布,而勘查地球化学原始数据的复杂性使得它很难满足这种假设,极端偏离数据主体的少数测量值或小额量总体可明显地影响估计值,至少部分掩盖数据的固有信息[21, 28]。EDA技术中的中位数(50%分位数)属于稳健统计学参数,具有很强的抵抗“野”数据干扰的能力[28-29]。Reimann et al[10-11]提出中位数作为背景值的估计值的观点,史长义等[21]X±3S为临界值一次性剔除异点后的数据集的中位数作为背景值的估计值,计算出了中国39种元素水系沉积物背景值。笔者采用X±3S为临界值一次性剔除异点后的数据集的中位数作为背景值的估计值。

2.2 统计单元划分

本次背景值的计算分2个统计单元进行(图1),即①中蒙边界阿尔泰地区;②构造单元:阿尔泰构造带、阿尔泰南缘弧盆系、东西准噶尔弧盆系、准噶尔地块、戈壁阿尔泰弧盆系、北山—戈壁天山弧盆系[30]

图1

图1   工作区及构造单元示意(据李俊建[30]修编)

Fig.1   Working area and structural units map (modified after Li Junjian[30])


3 中蒙边界阿尔泰地区汇水域沉积物背景值

中蒙边界阿尔泰地区汇水域沉积物统计参数见表1,包括原始统计值以及背景值(X±3S为临界值剔除异点后的数据集的中位数)。RCC(区域浓集系数)不仅可以清楚地反映出元素分散与富集规律,表征其空间分布趋势,指出成矿有利地质体,还可以为确定区域主要成矿元素提供信息。中蒙边界阿尔泰地区汇水域沉积物背景值与大陆地壳丰度[6]相对比(表1):Te、N、As、TC、B、Bi、Br、Sb、Tm、I、Yb、W、Lu、U、Er、Dy、Tb、Ho、Hf、Zr、Gd、Li、Cd、Cs、Se、In、Pb、Th、Sm、Pr、Y、P、Nd、Cu、Mn共35种元素RCC>1.1,表现为富集;Sn、La、Eu、Ce、Ti、Ga、Zn、SiO2、Ta、F、Ge、Rb共12种元素RCC介于0.9~1.1之间;K2O、Mo、V、Sc、Al2O3、Tl、Fe2O3、Be、Sr、Na2O、CaO、Ag、Nb、Ba、Cr、MgO、Co、Ni、Hg、S、Au、Cl 等22种元素RCC<0.9,表现为亏损。其中RCC>1的元素共44种,占63.77%,说明汇水域沉积物中多数元素较地壳富集,但主成分元素与微量元素不同,主成分除SiO2外,其余K2O、Al2O3、Fe2O3、Na2O、CaO、MgO均低于地壳丰度;与地壳丰度比较,在汇水域沉积物中强烈富集的微量元素多属易挥发元素(Te、N、As、TC、B、Bi、Br、Sb、I等),明显富集的微量元素多属亲石元素、不相容元素(W、U、Hf、Zr、Li、Cs、Th等)及稀土元素(Tm、Yb、Lu、Er、Dy、Tb、Ho、Gd、Sm、Pr、Y、Nd、La、Eu、Ce),亏损的微量元素多属亲铁元素(V、Cr、Co、Ni)和易溶组分(F、Sr、S、Cl)。地表沉积物作为上地壳再循环产物,汇水域沉积物化学元素背景值在总体上充分反映了亲石元素和不相容元素富集、亲铁元素贫化的基本地球化学特征。

表1   中蒙边界阿尔泰地区汇水域沉积物地球化学参数

Table 1  Geochemical parameters of catchment sediments collected in the Altay area across the boundary between China and Mongolia

元素原始数据背景值地壳丰度RCC
最小值P2.5P25P50P75P85P97.5最大值
Ag9.4032.447.053.064.072.011447053.0700.76
As0.622.125.338.0611.313.125.12237.981.74.70
Au0.0450.210.560.881.421.966.212350.882.50.35
B4.9018.438.848.760.369.912551348.411.04.40
Ba12526335741848252866117424175840.71
Be0.101.261.701.932.262.493.7418.331.932.40.80
Bi0.0300.120.220.290.390.480.9518.650.290.0853.41
Br0.200.241.422.534.997.5824.91172.491.02.49
Cd4.0060.410413618021035072791361001.36
Cl17.429.756.093.026377887298538690.74720.19
Co0.386.5310.112.315.016.521.534.112.3240.51
Cr4.8433.058.071.088.010014079770.81260.56
Cs0.122.103.234.506.648.2014.486.64.473.41.31
Cu0.9512.822.027.734.238.954.718127.6251.10
F18929442350560767296138695055250.96
Ga1.5411.414.115.617.218.221.227.015.6151.04
Ge0.160.961.211.341.481.561.795.321.341.40.96
Hf1.303.575.607.079.1210.5317.189.37.034.91.43
Hg0.506.0111.015.521.926.046.430515.5400.39
I0.010.491.001.432.202.765.4016.11.410.81.76
In0.0040.0370.0540.0620.0710.0790.111.630.0620.0501.24
Li1.0312.319.524.731.636.753.240024.6181.37
Mn1524156607899251007125630887887161.10
Mo0.100.380.730.961.221.432.7411.590.951.10.86
N59.413927747510991738481814581475607.91
Nb0.406.6311.413.817.019.329.385.413.8190.73
Ni1.1412.420.326.236.242.267.6392.526.1560.47
P21246671686910691206185765118677571.14
Pb1.9411.215.818.120.722.329.2493.918.114.81.22
Rb28.047.762.074.094.010714932774.0780.95
S6.7067.0147268659169511970564002616970.37
Sb0.0170.230.500.660.820.961.8325.40.660.302.19
Sc0.467.1711.613.716.017.421.740.413.7160.85
Se0.0130.0600.120.160.210.250.533.430.160.121.30
Sn0.931.422.022.483.013.335.0578.72.482.31.08
Sr23.610219626432135857039172623330.79
Ta0.240.570.901.111.471.793.0826.411.101.11.00
Te0.0020.0240.0400.0500.0630.0700.149.590.0500.00510.0
Th0.704.807.8710.313.215.226.617610.38.51.21
Ti72122623588419347785153665119961418440101.04
Tl0.0170.230.340.430.560.640.882.300.420.520.81
U0.0711.422.102.573.313.929.541452.561.71.51
V4.9443.070.584.099.810914136784.0980.86
W0.160.791.201.612.383.077.452231.601.01.60
Zn3.1335.055.066.879.088.0121187266.5651.02
Zr51.314722328738044570831872862031.41
Y9.4017.123.427.634.338.656.433927.6241.15
La1.1716.826.432.539.544.765.334132.3301.08
Ce2.4432.251.664.177.385.913776963.8601.06
Pr0.384.166.538.039.7411.015.891.47.996.71.19
Nd1.5716.225.330.637.141.760.234830.5271.13
Sm0.393.285.316.397.708.6812.769.56.385.31.20
元素原始数据背景值地壳丰度RCC
最小值P2.5P25P50P75P85P97.5最大值
Eu0.0860.851.201.391.601.752.294.981.391.31.07
Gd0.352.724.545.646.907.7911.368.55.614.01.40
Tb0.0560.460.760.941.151.301.9611.10.940.651.44
Dy0.362.824.685.656.827.6911.662.05.623.81.48
Ho0.0830.600.961.161.381.562.3611.51.150.81.44
Er0.171.592.613.153.854.376.5731.43.142.11.49
Tm0.0310.290.450.540.650.741.114.550.540.301.79
Yb0.181.852.823.324.054.586.9627.53.312.01.65
Lu0.0230.300.460.530.650.721.104.170.530.351.52
SiO215.848.158.261.764.866.771.680.261.861.71.00
Al2O32.6510.012.012.613.313.715.020.312.615.00.84
Fe2O30.592.574.334.985.716.187.7021.54.976.170.81
MgO0.280.941.631.992.422.683.6610.71.983.670.54
CaO0.461.212.984.165.416.2510.444.54.135.390.77
Na2O0.341.252.042.472.923.164.5417.92.463.180.77
K2O0.181.582.052.242.532.703.324.532.242.580.87
OrgC0.0180.0870.330.571.041.554.1313.60.55
TC0.0480.230.570.911.632.235.7216.10.890.194.66

注:Ag、Au、Hg含量单位为10-9,氧化物为%,其他为10-6;P=百分位数(P50=中位值);大陆地壳丰度引自Wedepohl K H,1995[6]

新窗口打开| 下载CSV


4 中蒙边界阿尔泰地区不同构造单元内汇水域沉积物背景值

中蒙边界阿尔泰地区不同构造单元汇水域沉积物背景值见表2,与中蒙边界阿尔泰地区全区背景值对比(表2,图2~7),总体上阿尔泰构造带、阿尔泰南缘弧盆系和戈壁阿尔泰弧盆系多元素背景值高于中蒙边界阿尔泰地区全区背景值;东西准噶尔弧盆系、准噶尔地块和北山—戈壁天山弧盆系多元素背景值低于中蒙边界阿尔泰地区全区背景值。

表2   中蒙边界阿尔泰地区不同构造单元汇水域沉积物背景值

Table 2  Background values of catchment sediments in different tectonic units in the Altay area across the boundary between China and Mongolia

元素123456RCC1RCC2RCC3RCC4RCC5RCC6
Ag59.552.050.155.054.053.01.120.980.951.041.021.00
As6.895.159.627.1610.347.520.860.641.210.901.300.94
Au0.980.700.940.840.550.781.120.801.060.950.630.89
B55.152.146.843.047.625.91.141.080.970.890.980.54
Ba3813574444724175430.910.861.061.131.001.30
Be1.962.031.862.082.032.001.021.050.961.081.051.04
Bi0.380.350.250.270.240.271.301.210.850.930.810.92
Br4.563.561.661.663.031.541.831.430.670.671.220.62
Cd1601211321141601251.180.890.970.831.180.92
Cl10354.383.97711651111.130.600.928.491.821.22
Co13.913.211.711.812.58.321.131.070.950.961.020.68
Cr84.984.065.065.064.045.01.201.190.920.920.900.64
Cs7.275.733.514.223.563.601.631.280.790.940.800.80
Cu27.626.628.128.130.222.81.000.971.021.021.090.83
F5845784604154894061.161.150.910.820.970.80
Ga17.415.914.814.016.614.51.121.020.950.901.070.93
Ge1.421.431.301.241.341.181.061.070.970.931.000.88
Hf6.316.147.719.418.814.790.900.871.101.341.250.68
Hg19.016.514.010.120.011.71.231.060.910.651.290.75
I1.461.191.501.431.351.301.030.841.061.010.960.92
In0.0620.0670.0610.0610.0700.0511.001.080.980.981.130.82
Li31.628.621.827.320.816.71.281.160.891.110.840.68
Mn7068558107169575920.901.081.030.911.210.75
Mo0.800.781.081.101.000.890.840.821.141.151.050.94
N15267313262975902083.211.540.690.631.240.44
Nb14.715.913.09.9216.811.01.071.150.940.721.210.80
Ni38.131.822.226.823.017.01.461.220.851.030.880.65
P88896285271611415841.021.110.980.831.320.67
Pb19.219.417.515.118.219.51.061.070.970.831.011.08
Rb99.783.964.667.067.084.01.351.130.870.910.911.14
S31519724711793541511.210.760.954.511.350.58
Sb0.620.510.700.630.700.660.940.771.060.961.071.00
Sc13.615.313.413.416.48.90.991.120.980.981.200.65
Se0.140.140.160.210.170.160.930.871.051.361.071.00
Sn2.932.902.141.902.662.391.181.170.860.771.070.96
Sr1572252992763192950.600.861.141.051.221.12
Ta1.151.171.070.851.321.071.041.060.970.771.200.97
Te0.0500.0450.0520.0530.0500.0401.000.901.041.061.000.80
Th11.812.69.018.729.157.461.151.220.870.850.890.72
Ti3931434143203860492430160.941.041.030.921.180.72
Tl0.560.490.360.500.350.461.321.160.841.180.831.08
U3.022.902.402.542.281.981.181.130.940.990.890.77
V88.284.485.075.080.460.01.051.011.010.890.960.71
W2.372.081.291.131.261.631.481.300.810.700.791.02
Zn79.571.061.055.574.047.01.191.070.920.831.110.71
Zr2363103202753062010.831.091.120.961.070.70
Y31.632.126.121.729.321.61.141.160.950.791.060.78
La35.737.029.827.535.321.41.101.140.920.851.090.66
Ce68.571.159.257.771.039.51.071.110.930.911.110.62
Pr8.679.077.457.198.515.511.081.140.930.901.070.69
元素123456RCC1RCC2RCC3RCC4RCC5RCC6
Nd32.834.928.626.833.721.41.071.140.940.881.100.70
Sm6.667.416.155.907.144.421.041.160.960.931.120.69
Eu1.271.491.431.541.451.190.911.081.031.111.040.86
Gd6.156.615.244.796.313.311.101.180.930.851.120.59
Tb0.991.100.880.841.070.621.051.170.940.891.140.66
Dy5.876.575.485.256.163.851.051.170.980.931.100.68
Ho1.141.361.151.101.290.820.991.181.000.961.120.71
Er3.303.743.032.883.632.091.051.190.960.921.160.66
Tm0.530.640.530.510.630.400.991.190.990.961.180.74
Yb3.383.963.243.113.772.461.021.200.980.941.140.75
Lu0.540.620.520.520.600.391.021.170.980.981.130.73
SiO262.361.762.062.959.758.91.011.001.001.020.970.95
Al2O312.913.012.512.912.612.31.021.030.991.021.000.98
Fe2O35.215.234.894.385.813.931.051.050.980.881.170.79
MgO2.202.131.881.832.461.471.111.070.950.921.240.74
CaO2.653.384.643.795.036.170.640.821.120.921.221.49
Na2O2.162.312.632.902.602.790.880.941.071.181.061.14
K2O2.472.242.162.222.142.551.101.000.960.990.951.14
OrgC1.310.710.410.510.510.362.391.290.750.930.930.65
TC1.820.950.700.531.200.912.051.070.790.601.361.03

注:1—阿尔泰构造带背景值;2—阿尔泰南缘弧盆系背景值;3—东西准噶尔弧盆系背景值;4—准噶尔地块背景值;5—戈壁阿尔泰弧盆系,背景值;6—北山—戈壁天山弧盆系背景值;RCC1—阿尔泰构造带背景值与全区背景值之比;RCC2—阿尔泰南缘弧盆系背景值与全区,背景值之比; RCC3—东西准噶尔弧盆系背景值与全区背景值之比; RCC4—准噶尔地块背景值与全区背景值之比; RCC5—戈壁阿尔,泰弧盆系背景值与全区背景值之比; RCC6—北山—戈壁天山弧盆系背景值与全区背景值之比;Ag、Au、Hg含量单位为10-9,氧化物,为%,其他为10-6

新窗口打开| 下载CSV


图2

图2   阿尔泰构造带区域浓集系数对比

Fig.2   Comparison of regional concentration coefficient in the Altay tectonic belt


图3

图3   阿尔泰南缘弧盆系区域浓集系数对比

Fig.3   Comparison of regional concentration coefficient in the arc basin system in the southern margin of the Altay


图4

图4   东西准噶尔弧盆系区域浓集系数对比

Fig.4   Comparison of regional concentration coefficient in the eastern and western Junggar arc basin system


图5

图5   准噶尔地块区域浓集系数对比

Fig.5   Comparison of regional concentration coefficient in the Junggar block


图6

图6   戈壁阿尔泰弧盆系区域浓集系数对比

Fig.6   Comparison of regional concentration coefficient in the arc basin system in the Gobi Altay


图7

图7   北山—戈壁天山弧盆系区域浓集系数对比

Fig.7   Comparison of regional concentration coefficient in the Beishan-Gobi Tianshan arc basin system


阿尔泰构造带N、OrgC、TC、Br、Cs、W、Ni、Rb、Tl、Bi、Li、Hg、S、Cr、Zn、Sn、Cd、U、F、Th、Y、B、Cl、Co、Ag、Ga、Au、MgO、La、K2O、Gd、Pr、Nd、Ce、Nb、Ge、Pb、Tb、Er、V、Fe2O3、Dy、Sm、Ta、I、P、Yb、Al2O3、Lu、Be、SiO2、Cu 52种元素RCC1>1。其中N、OrgC、TC、Br、Cs、W、Ni、Rb、Tl、Bi、Li、Hg、S、Cr 14种元素RCC1>1.2,显著富集;Zn、Sn、Cd、U、F、Th、Y、B、Cl、Co、Ag、Ga、Au、MgO、La、K2O、Gd 17种元素RCC1>1.1,富集;In、Sc、Ho、Tm、Ti、Sb、Se、Eu、Ba、Hf、Mn、Na2O、As、Mo、Zr、CaO、Sr 17种元素RCC1<1,亏损。

阿尔泰南缘弧盆系N、Br、W、OrgC、Cs、Th、Ni、Bi、Yb、Tm、Er、Cr、Ho、Gd、Tb、Dy、Sn、Lu、Y、Li、Sm、Tl、Nb、F、La、Nd、Pr、U、Rb、Sc、Ce、P、Zr、Mn、In、B、Eu、Co、MgO、Pb、TC、Zn、Ge、Hg、Ta、Be、Fe2O3、Ti、Al2O3、Ga、V 51种元素RCC2>1。其中N、Br、W、OrgC、Cs、Th、Ni、Bi 8种元素RCC2>1.2,显著富集;Yb、Tm、Er、Cr、Ho、Gd、Tb、Dy、Sn、Lu、Y、Li、Sm、Tl、Nb、F、La、Nd、Pr、U、Rb、Sc、Ce、P 24种元素RCC2>1.1,富集;K2O、SiO2、Ag、Cu、Na2O、Te、Cd、Hf、Se、Sr、Ba、I、CaO、Mo、Au、Sb、S、As、Cl 19种元素RCC2<1,亏损。

东西准噶尔弧盆系As、Sr、Mo、CaO、Zr、Hf、Na2O、Ba、Au、Sb、I、Se、Te、Ti、Mn、Eu、Cu、V、SiO2 19种元素RCC3>1。其中As的RCC3>1.2,显著富集;Sr、Mo、CaO、Zr 4种元素RCC3>1.1,富集;其余51种元素均亏损。

准噶尔地块Cl、S、Se、Hf、Na2O、Tl、Mo、Ba、Eu、Li、Be、Te、Sr、Ag、Ni、Cu、SiO2、Al2O3、I共19种元素RCC4>1。其中Cl、S、Se、Hf 4种元素RCC4>1.2,显著富集;Na2O、Tl、Mo、Ba、Eu、Li 6种元素RCC4>1.1,富集;其余51种元素均亏损。

戈壁阿尔泰弧盆系Cl、TC、S、P、As、Hg、Hf、MgO、N、CaO、Br、Sr、Mn、Nb、Sc、Ta、Ti、Cd、Tm、Fe2O3、Er、Tb、Yb、In、Lu、Gd、Ho、Sm、Ce、Zn、Nd、Dy、Cu、La、Sn、Zr、Ga、Sb、Pr、Se、Y、Na2O、Mo、Be、Eu、Ag、Co、Pb、Ge、Ba 50种元素RCC5>1。其中Cl、TC、S、P、As、Hg、Hf、MgO、N、CaO、Br、Sr、Mn、Nb、Sc 15种元素RCC5>1.2,显著富集;Ta、Ti、Cd、Tm、Fe2O3、Er、Tb、Yb、In、Lu、Gd、Ho、Sm、Ce、Zn、Nd 16种元素RCC5>1.1,富集;其余19种元素均亏损。

北山—戈壁天山弧盆系CaO、Ba、Cl、K2O、Na2O、Rb、Sr、Tl、Pb、Be、TC、W 12种元素RCC6>1。其中CaO、Ba、Cl 3种元素RCC6>1.2,显著富集;K2O、Na2O、Rb、Sr 4种元素RCC6>1.1,富集;其余57种元素均亏损。

总之,不同大地构造单元的汇水域沉积物具有不同的元素含量特征,这与其所处大地构造背景和地质背景以及构造岩浆活动密切相关,也反映出区域地壳的化学成分是不均一的,表明不同大地构造单元元素含量背景存在悬殊的差异性和不均匀性,具有显著差异的区域元素地球化学特征,暗示它们可能经历了完全不同的地质构造演化历史。一些大地构造单元特别富集某些元素,如阿尔泰构造带和阿尔泰南缘弧盆系富含锂铍铌钽等稀有金属[24-26]及镧铈等稀土元素,为大型矿床的形成提供了充足的巨量元素供给,为地球化学块体理论、巨量物质聚集、套合的元素地球化学模式谱系与大型巨型矿床形成的关系的研究提供了基本的地球化学证据[31]

5 结论

本文依托中蒙边界1:100万地球化学填图数据,以X±3S为临界值剔除异点后的数据集的中位数作为背景值的估计值,计算了中蒙边界阿尔泰地区和中蒙边界阿尔泰地区不同构造单元的69种元素汇水域沉积物背景值,为进一步深入开发利用中蒙边界1:100万地球化学填图数据和资料提供基础数据,也为利用中蒙边界1:100万地球化学填图资料进行区域成矿预测和生态环境评价提供参考标准。受大地构造背景和地质背景的控制,不同构造单元的汇水域沉积物背景值表现出不同的特征,也反映出区域地壳化学成分的不均一性。

参考文献

Clarke F W, Washington H S .

The composition of the Earth’s crust

[J]. U. S. Geological Survey Professional Paper, Washington. D. C., 1924: 127.

[本文引用: 1]

Turekian K K, Wedepohl K H .

Distribution of the elements in some major units of the Earth’s curst

[J]. Gelogical Society of America Bulletin, 1961,72(2):175-192.

Vinogradov A P .

Average content of chemical elements in the major types of igneous rocks of the Earth’s crust

[J]. Geochemistry, 1962,( 7):641-664.

Taylor S R, Mclennan S M .

The continental crust: its composition and evolution

[M]. Oxford: Blackwell Scientific Publications, 1985: 312.

Rudnick R L, Gao shan.

Composition of the continental crust

[M]. Treatise on Geochemistry, 2003: 1-64.

Wedepohl K H .

The composition of the continental crust

[J]. Geochimica Cosmochimica Acta, 1995,59(7):1217-1232.

[本文引用: 2]

黎彤, 倪守斌 . 地球和地壳的化学元素丰度[M]. 北京: 地质出版社, 1990.

Li T, Ni S B. The abundances of chemical elements in the Earth and its crust[M]. Beijing: Geological Publishing House, 1990.

史长义, 鄢明才, 刘崇明 , .

中国花岗岩类化学元素丰度及特征

[J]. 地球化学, 2005,34(5):470-482.

Shi C Y, Yan M C, Liu C M , et al.

Abundances of chemical elements in granitoids of China and their characteristics

[J]. Geochemica, 2005,34(5):470-482.

鄢明才, 迟清华 . 中国东部地壳与岩石的化学组成[M]. 北京: 地质出版社, 1997.

[本文引用: 1]

Yan M C, Chi Q H. The chemical compositions of crust and rocks in the Eastern part of China[M]. Beijing: Science Press, 1997.

[本文引用: 1]

Reimann C, Filzmoser P, Garrett R G .

Background and threshold: Critical comparison of methods of determination

[J]. Science of the Total Environment, 2005,346(1-3):1-16.

[本文引用: 2]

Reimann C, Garrett R G .

Geochemical background-concept and reality

[J]. Science of the Total Environment, 2005,350(1-3):12-27.

[本文引用: 1]

Salminen R, Gregorauskiene V .

Considerations regarding the definition of a geochemical baselines of elements in the surficial materials in areas differing in basic geology

[J]. Applied Geochemistry, 2000,15(5):647-653.

[本文引用: 1]

Albanese S, De Vivo B, Lima A , et al.

Geochemical background and baseline values of toxic elements in stream sediments of Campania region (Italy)

[J]. Journal of Geochemical Exploration, 2007,93(1):21-34.

[本文引用: 1]

Reimann C, De Caritat P .

Establishing geochemical background variation and threshold values for 59 elements in Australian surface soil

[J]. Science of the Total Environment, 2017,578:633-648.

Reimann C, Fabian K, Birke M , et al.

GEMAS: Establishing geochemical background and threshold for 53 chemical elements in European agricultural soil

[J]. Applied Geochemistry, 2018,88:302-318.

Tarvainen T, Kallio E .

Baselines of certain bioavailable and total heavy concentrations in Finland

[J]. Applied Geochemistry, 2002,17:975-980.

成杭新, 李括, 李敏 , .

中国城市土壤化学元素的背景值与基准值

[J]. 地学前缘, 2014,21(3):265-306.

DOI:10.13745/j.esf.2014.03.028      URL    

通过对中国31个省会城市3 799件表层土壤样品(0~20 cm)和1 011件深层土壤样品(150~180 cm)中52种化学元素(Ag、As、Au、B、Ba、Be、Bi、Br、Cd、Ce、Cl、Co、Cr、Cu、F、Ga、Ge、Hg、I、La、Li、Mn、Mo、N、Nb、Ni、P、Pb、Rb、S、Sb、Sc、Se、Sn、Sr、Th、Ti、Tl、U、V、W、Y、Zn、Zr、SiO2、Al2 O3、TFe2O3、MgO、CaO、Na2O和K2 O)及pH和有机碳(C..)数据分布结构的研究,采用中位数-绝对中位差法、正态和对数正态法计算出中国及31个省会城市土壤52种化学元素的地球化学背景值、基准值及它们的变化区间.数据显示,城市土壤中Coon、N、Ca、Hg、Ag、Au、Bi、Cd、Cu、Mo、Pb、S、Sb、Se、Sn、Zn元素的自然背景发生了显著变化,清晰显示出中国大规模的城镇化和工业化对这些元素在城市土壤中累积的重要贡献.这对全面认识中国城市土壤环境质量现状具有重要的现实意义,也是土壤环境质量保护立法及执法标准制定的重要依据.

Cheng H X, Li K, Li M , et al.

Geochemical background and baseline value of chemical elements in urban soil in China

[J]. Earth Science Frontiers, 2014,21(3):265-306.

程志中, 谢学锦, 潘含江 , .

中国南方地区水系沉积物中元素丰度

[J]. 地学前缘, 2011,18(5):289-295.

Cheng Z Z, Xie X J, Pan H J , et al.

Abundance of elements in stream sediment in South China

[J]. Earth Science Frontiers, 2011,18(5):289-295.

迟清华, 鄢明才 . 应用地球化学元素丰度数据手册[M]. 北京: 地质出版社, 2007.

Chi Q H, Yan M C. Handbook of Elemental Abundance for Applied Geochemistry[M]. Beijing: Geological Publishing House, 2007.

王学求, 周建, 徐善法 , .

全国地球化学基准网建立与土壤地球化学基准值特征

[J]. 中国地质, 2016,43(5):1469-1480.

Wang X Q, Zhou J, Xu S F , et al.

China soil geochemical baselines networks: Data characteristics

[J]. Geology in China, 2016,43(5):1469-1480.

史长义, 梁萌, 冯斌 .

中国水系沉积物39种元素系列背景值

[J]. 地球科学, 2016,41(2):234-251.

[本文引用: 3]

Shi C Y, Liang M, Feng B .

Average background values of 39 chemical elements in stream sediments of China

[J]. Earth Science, 2016,41(2):234-251.

[本文引用: 3]

邹天人, 李庆昌 . 中国新疆稀有及稀土金属矿床[M]. 北京: 地质出版社, 2006, 34-170.

[本文引用: 1]

Zou T R, Li Q C. Rare and rare earth metal deposits in Xinjiang, China[M]. Beijing: Geological Publishing House, 2006, 34-170.

[本文引用: 1]

Wang X Q, Chi Q H, Liu H Y , et al.

Wide-spaced sampling for delineation of geochemical provinces in desert terrains, northwestern China

[J]. Geochemistry: Exploration, Environment, Analysis, 2007,7(2):153-161.

[本文引用: 1]

刘汉粮, 聂兰仕, 王学求 , .

中蒙跨境阿尔泰构造带稀有元素锂区域地球化学分布

[J]. 现代地质, 2018,32(3):493-499.

[本文引用: 1]

Liu H L, Nie L S, Wang X Q , et al.

Regional geochemistry of lithium in the Altay area across the boundary of China and Mongolia

[J]. Geoscience, 2018,32(3):493-499.

[本文引用: 1]

刘汉粮, 聂兰仕, 王学求 , .

中蒙跨境阿尔泰地区铍区域地球化学特征

[J]. 地质与勘探, 2019,55(1):95-102.

Liu H L, Nie L S, Wang X Q , et al.

Regional geochemistry of beryllium in the Altay area across the border between China and Mongolia

[J]. Geology and Exploration, 2019,55(1):95-102.

刘汉粮, 王学求, 聂兰仕 , .

阿尔泰成矿带中蒙边界地区稀有元素铌和钽区域地球化学特征

[J]. 现代地质, 2018,32(5):1063-1073.

[本文引用: 2]

Liu H L, Wang X Q, Nie L S , et al.

Regional geochemistry of niobium and tantalum across the boundary of China and Mongolia in the Altay metallogenic belt

[J]. Geoscience, 2018,32(5):1063-1073.

[本文引用: 2]

张勤, 白金峰, 王烨 .

地壳全元素配套分析方案及分析质量监控系统

[J]. 地学前缘, 2012,19(3):33-42.

[本文引用: 1]

Zhang Q, Bai J F, Wang Y .

Analytical scheme and quality monitoring system for China Geochemical Baselines

[J]. Earth Science Frontiers, 2012,19(3):33-42.

[本文引用: 1]

史长义 .

勘查数据分析(EDA)技术的应用

[J]. 地质与勘探, 1993,29(11):52-58.

[本文引用: 2]

Shi C Y .

Application of the exploratory data analysis technique

[J]. Geology and Exploration, 1993,29(11):52-58.

[本文引用: 2]

Kürzl H .

Exploratory data analysis: recent advances for the interpretation of geochemical data

[J]. Journal of Geochemical Exploration, 1988,30:309-322.

[本文引用: 1]

李俊建, 张锋, 任军平 , .

中蒙边界地区构造单元划分

[J]. 地质通报, 2015,34(4):636-662.

[本文引用: 3]

Li J J, Zhang F, Ren J P , et al.

Tectonic units in China-Mongolia border area and their fundamental characteristics

[J]. Geological Bulletin of China, 2015,34(4):636-662.

[本文引用: 3]

谢学锦, 刘大文, 向运川 , .

地球化学块体-概念和方法学的发展

[J]. 中国地质, 2002,29(3):225-233.

[本文引用: 1]

Xie X J, Liu Da W, Xiang Y C , et al.

Geochemical blocks—Development of concept and methodology

[J]. Geology in China, 2002,29(3):225-233.

[本文引用: 1]

/

京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com