Please wait a minute...
E-mail Alert Rss
 
物探与化探  2019, Vol. 43 Issue (6): 1163-1172    DOI: 10.11720/wtyht.2019.0249
  地质调查·资源勘查 本期目录 | 过刊浏览 | 高级检索 |
中蒙边界阿尔泰地区汇水域沉积物69种元素背景值特征
刘汉粮1,2,3, 聂兰仕1,2,3(), Shojin Davaa4, 王学求1,2,3, 迟清华1,2,3, Enkhtaivan Altanbagana4,5
1. 自然资源部 地球化学探测重点实验室,河北 廊坊 065000
2. 中国地质科学院 地球物理地球化学勘查研究所,河北 廊坊 065000
3. 联合国教科文组织全球尺度地球化学国际研究中心,河北 廊坊 065000
4. Geological Investigation Center, Mongolia, Ulaanbaatar-37 P.box-318
5. 中国地质大学(北京),地球科学与资源学院,北京 100083
Characteristics of background values of 69 elements in the catchment sediments of the Altay area across the boundary between China and Mongolia
Han-Liang LIU1,2,3, Lan-Shi NIE1,2,3(), Davaa Shojin4, Xue-Qiu WANG1,2,3, Qing-Hua CHI1,2,3, Altanbagana Enkhtaivan4,5
1. Key Laboratory of Geochemical Exploration, Ministry of Natural Resources, Langfang 065000, China
2. Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences, Langfang 065000, China
3. UNESCO International Centre on Global-scale Geochemistry, Langfang 065000, China
4. Geological Investigation Center, Mongolia, Ulaanbaatar-37 P.box-318
5. School of the Earth Sciences and Resources, China University of Geosciences (Beijing), Beijing 100083, China
全文: PDF(3750 KB)   HTML
输出: BibTeX | EndNote (RIS)      
摘要 

阿尔泰地区是重要的稀有金属、有色金属、宝石和工业白云母成矿带。以中蒙边界1∶100万地球化学填图数据为基础,采用原始数据以X±3S为临界值一次性剔除异点后的数据集的中位值作为背景值的估计值,计算了中蒙边界阿尔泰地区及6个大地构造单元的69种元素汇水域沉积物背景值,并探讨其区域分布规律和特征。研究表明,不同的大地构造单元由于不同的地质背景导致元素的地球化学分布模式也不同。这些背景值为进一步深入开发利用中蒙边界地球化学填图数据提供了可供对比的基础数据。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘汉粮
聂兰仕
Shojin Davaa
王学求
迟清华
Enkhtaivan Altanbagana
关键词 69种元素背景值汇水域沉积物阿尔泰地区中蒙边界    
Abstract

The Altay area is an important rare metal, non-ferrous metal, gemstone and industrial muscovite metallogenic belt. Based on the 1︰1 000 000 geochemical mapping data across the boundary between China and Mongolia, the authors calculated background values of 69 elements in the catchment sediments. The median values of the dataset after disposable eliminating outliers from the original dataset with X±3S as the critical values were used as estimated values of the geochemical background values. The results show that the geochemical distribution of elements in different geotectonic units is different due to different geological backgrounds. These background values can be used as basic data for comparison for further development and utilization of geochemical mapping data across the boundary between China and Mongolia.

Key wordsbackground values of 69 elements    catchment sediments    Altay area    boundary between China and Mongolia
收稿日期: 2019-04-29      出版日期: 2019-11-28
:  P596  
  P632  
基金资助:国家重点研发计划项目(2016YFC0600600);中国地质调查局地质调查项目(DD20160116);中国地质调查局地质调查项目(DD20190451)
通讯作者: 聂兰仕
作者简介: 刘汉粮(1985-),男,硕士,工程师,从事勘查地球化学研究工作。Email:liuhanliang@igge.cn
引用本文:   
刘汉粮, 聂兰仕, Shojin Davaa, 王学求, 迟清华, Enkhtaivan Altanbagana. 中蒙边界阿尔泰地区汇水域沉积物69种元素背景值特征[J]. 物探与化探, 2019, 43(6): 1163-1172.
Han-Liang LIU, Lan-Shi NIE, Davaa Shojin, Xue-Qiu WANG, Qing-Hua CHI, Altanbagana Enkhtaivan. Characteristics of background values of 69 elements in the catchment sediments of the Altay area across the boundary between China and Mongolia. Geophysical and Geochemical Exploration, 2019, 43(6): 1163-1172.
链接本文:  
https://www.wutanyuhuatan.com/CN/10.11720/wtyht.2019.0249      或      https://www.wutanyuhuatan.com/CN/Y2019/V43/I6/1163
Fig.1  工作区及构造单元示意(据李俊建[30]修编)
元素 原始数据 背景值 地壳丰度 RCC
最小值 P2.5 P25 P50 P75 P85 P97.5 最大值
Ag 9.40 32.4 47.0 53.0 64.0 72.0 114 470 53.0 70 0.76
As 0.62 2.12 5.33 8.06 11.3 13.1 25.1 223 7.98 1.7 4.70
Au 0.045 0.21 0.56 0.88 1.42 1.96 6.21 235 0.88 2.5 0.35
B 4.90 18.4 38.8 48.7 60.3 69.9 125 513 48.4 11.0 4.40
Ba 125 263 357 418 482 528 661 1742 417 584 0.71
Be 0.10 1.26 1.70 1.93 2.26 2.49 3.74 18.33 1.93 2.4 0.80
Bi 0.030 0.12 0.22 0.29 0.39 0.48 0.95 18.65 0.29 0.085 3.41
Br 0.20 0.24 1.42 2.53 4.99 7.58 24.9 117 2.49 1.0 2.49
Cd 4.00 60.4 104 136 180 210 350 7279 136 100 1.36
Cl 17.4 29.7 56.0 93.0 263 778 8729 85386 90.7 472 0.19
Co 0.38 6.53 10.1 12.3 15.0 16.5 21.5 34.1 12.3 24 0.51
Cr 4.84 33.0 58.0 71.0 88.0 100 140 797 70.8 126 0.56
Cs 0.12 2.10 3.23 4.50 6.64 8.20 14.4 86.6 4.47 3.4 1.31
Cu 0.95 12.8 22.0 27.7 34.2 38.9 54.7 181 27.6 25 1.10
F 189 294 423 505 607 672 961 3869 505 525 0.96
Ga 1.54 11.4 14.1 15.6 17.2 18.2 21.2 27.0 15.6 15 1.04
Ge 0.16 0.96 1.21 1.34 1.48 1.56 1.79 5.32 1.34 1.4 0.96
Hf 1.30 3.57 5.60 7.07 9.12 10.53 17.1 89.3 7.03 4.9 1.43
Hg 0.50 6.01 11.0 15.5 21.9 26.0 46.4 305 15.5 40 0.39
I 0.01 0.49 1.00 1.43 2.20 2.76 5.40 16.1 1.41 0.8 1.76
In 0.004 0.037 0.054 0.062 0.071 0.079 0.11 1.63 0.062 0.050 1.24
Li 1.03 12.3 19.5 24.7 31.6 36.7 53.2 400 24.6 18 1.37
Mn 152 415 660 789 925 1007 1256 3088 788 716 1.10
Mo 0.10 0.38 0.73 0.96 1.22 1.43 2.74 11.59 0.95 1.1 0.86
N 59.4 139 277 475 1099 1738 4818 14581 475 60 7.91
Nb 0.40 6.63 11.4 13.8 17.0 19.3 29.3 85.4 13.8 19 0.73
Ni 1.14 12.4 20.3 26.2 36.2 42.2 67.6 392.5 26.1 56 0.47
P 212 466 716 869 1069 1206 1857 6511 867 757 1.14
Pb 1.94 11.2 15.8 18.1 20.7 22.3 29.2 493.9 18.1 14.8 1.22
Rb 28.0 47.7 62.0 74.0 94.0 107 149 327 74.0 78 0.95
S 6.70 67.0 147 268 659 1695 11970 56400 261 697 0.37
Sb 0.017 0.23 0.50 0.66 0.82 0.96 1.83 25.4 0.66 0.30 2.19
Sc 0.46 7.17 11.6 13.7 16.0 17.4 21.7 40.4 13.7 16 0.85
Se 0.013 0.060 0.12 0.16 0.21 0.25 0.53 3.43 0.16 0.12 1.30
Sn 0.93 1.42 2.02 2.48 3.01 3.33 5.05 78.7 2.48 2.3 1.08
Sr 23.6 102 196 264 321 358 570 3917 262 333 0.79
Ta 0.24 0.57 0.90 1.11 1.47 1.79 3.08 26.41 1.10 1.1 1.00
Te 0.002 0.024 0.040 0.050 0.063 0.070 0.14 9.59 0.050 0.005 10.0
Th 0.70 4.80 7.87 10.3 13.2 15.2 26.6 176 10.3 8.5 1.21
Ti 721 2262 3588 4193 4778 5153 6651 19961 4184 4010 1.04
Tl 0.017 0.23 0.34 0.43 0.56 0.64 0.88 2.30 0.42 0.52 0.81
U 0.071 1.42 2.10 2.57 3.31 3.92 9.54 145 2.56 1.7 1.51
V 4.94 43.0 70.5 84.0 99.8 109 141 367 84.0 98 0.86
W 0.16 0.79 1.20 1.61 2.38 3.07 7.45 223 1.60 1.0 1.60
Zn 3.13 35.0 55.0 66.8 79.0 88.0 121 1872 66.5 65 1.02
Zr 51.3 147 223 287 380 445 708 3187 286 203 1.41
Y 9.40 17.1 23.4 27.6 34.3 38.6 56.4 339 27.6 24 1.15
La 1.17 16.8 26.4 32.5 39.5 44.7 65.3 341 32.3 30 1.08
Ce 2.44 32.2 51.6 64.1 77.3 85.9 137 769 63.8 60 1.06
Pr 0.38 4.16 6.53 8.03 9.74 11.0 15.8 91.4 7.99 6.7 1.19
Nd 1.57 16.2 25.3 30.6 37.1 41.7 60.2 348 30.5 27 1.13
Sm 0.39 3.28 5.31 6.39 7.70 8.68 12.7 69.5 6.38 5.3 1.20
元素 原始数据 背景值 地壳丰度 RCC
最小值 P2.5 P25 P50 P75 P85 P97.5 最大值
Eu 0.086 0.85 1.20 1.39 1.60 1.75 2.29 4.98 1.39 1.3 1.07
Gd 0.35 2.72 4.54 5.64 6.90 7.79 11.3 68.5 5.61 4.0 1.40
Tb 0.056 0.46 0.76 0.94 1.15 1.30 1.96 11.1 0.94 0.65 1.44
Dy 0.36 2.82 4.68 5.65 6.82 7.69 11.6 62.0 5.62 3.8 1.48
Ho 0.083 0.60 0.96 1.16 1.38 1.56 2.36 11.5 1.15 0.8 1.44
Er 0.17 1.59 2.61 3.15 3.85 4.37 6.57 31.4 3.14 2.1 1.49
Tm 0.031 0.29 0.45 0.54 0.65 0.74 1.11 4.55 0.54 0.30 1.79
Yb 0.18 1.85 2.82 3.32 4.05 4.58 6.96 27.5 3.31 2.0 1.65
Lu 0.023 0.30 0.46 0.53 0.65 0.72 1.10 4.17 0.53 0.35 1.52
SiO2 15.8 48.1 58.2 61.7 64.8 66.7 71.6 80.2 61.8 61.7 1.00
Al2O3 2.65 10.0 12.0 12.6 13.3 13.7 15.0 20.3 12.6 15.0 0.84
Fe2O3 0.59 2.57 4.33 4.98 5.71 6.18 7.70 21.5 4.97 6.17 0.81
MgO 0.28 0.94 1.63 1.99 2.42 2.68 3.66 10.7 1.98 3.67 0.54
CaO 0.46 1.21 2.98 4.16 5.41 6.25 10.4 44.5 4.13 5.39 0.77
Na2O 0.34 1.25 2.04 2.47 2.92 3.16 4.54 17.9 2.46 3.18 0.77
K2O 0.18 1.58 2.05 2.24 2.53 2.70 3.32 4.53 2.24 2.58 0.87
OrgC 0.018 0.087 0.33 0.57 1.04 1.55 4.13 13.6 0.55
TC 0.048 0.23 0.57 0.91 1.63 2.23 5.72 16.1 0.89 0.19 4.66
Table 1  中蒙边界阿尔泰地区汇水域沉积物地球化学参数
元素 1 2 3 4 5 6 RCC1 RCC2 RCC3 RCC4 RCC5 RCC6
Ag 59.5 52.0 50.1 55.0 54.0 53.0 1.12 0.98 0.95 1.04 1.02 1.00
As 6.89 5.15 9.62 7.16 10.34 7.52 0.86 0.64 1.21 0.90 1.30 0.94
Au 0.98 0.70 0.94 0.84 0.55 0.78 1.12 0.80 1.06 0.95 0.63 0.89
B 55.1 52.1 46.8 43.0 47.6 25.9 1.14 1.08 0.97 0.89 0.98 0.54
Ba 381 357 444 472 417 543 0.91 0.86 1.06 1.13 1.00 1.30
Be 1.96 2.03 1.86 2.08 2.03 2.00 1.02 1.05 0.96 1.08 1.05 1.04
Bi 0.38 0.35 0.25 0.27 0.24 0.27 1.30 1.21 0.85 0.93 0.81 0.92
Br 4.56 3.56 1.66 1.66 3.03 1.54 1.83 1.43 0.67 0.67 1.22 0.62
Cd 160 121 132 114 160 125 1.18 0.89 0.97 0.83 1.18 0.92
Cl 103 54.3 83.9 771 165 111 1.13 0.60 0.92 8.49 1.82 1.22
Co 13.9 13.2 11.7 11.8 12.5 8.32 1.13 1.07 0.95 0.96 1.02 0.68
Cr 84.9 84.0 65.0 65.0 64.0 45.0 1.20 1.19 0.92 0.92 0.90 0.64
Cs 7.27 5.73 3.51 4.22 3.56 3.60 1.63 1.28 0.79 0.94 0.80 0.80
Cu 27.6 26.6 28.1 28.1 30.2 22.8 1.00 0.97 1.02 1.02 1.09 0.83
F 584 578 460 415 489 406 1.16 1.15 0.91 0.82 0.97 0.80
Ga 17.4 15.9 14.8 14.0 16.6 14.5 1.12 1.02 0.95 0.90 1.07 0.93
Ge 1.42 1.43 1.30 1.24 1.34 1.18 1.06 1.07 0.97 0.93 1.00 0.88
Hf 6.31 6.14 7.71 9.41 8.81 4.79 0.90 0.87 1.10 1.34 1.25 0.68
Hg 19.0 16.5 14.0 10.1 20.0 11.7 1.23 1.06 0.91 0.65 1.29 0.75
I 1.46 1.19 1.50 1.43 1.35 1.30 1.03 0.84 1.06 1.01 0.96 0.92
In 0.062 0.067 0.061 0.061 0.070 0.051 1.00 1.08 0.98 0.98 1.13 0.82
Li 31.6 28.6 21.8 27.3 20.8 16.7 1.28 1.16 0.89 1.11 0.84 0.68
Mn 706 855 810 716 957 592 0.90 1.08 1.03 0.91 1.21 0.75
Mo 0.80 0.78 1.08 1.10 1.00 0.89 0.84 0.82 1.14 1.15 1.05 0.94
N 1526 731 326 297 590 208 3.21 1.54 0.69 0.63 1.24 0.44
Nb 14.7 15.9 13.0 9.92 16.8 11.0 1.07 1.15 0.94 0.72 1.21 0.80
Ni 38.1 31.8 22.2 26.8 23.0 17.0 1.46 1.22 0.85 1.03 0.88 0.65
P 888 962 852 716 1141 584 1.02 1.11 0.98 0.83 1.32 0.67
Pb 19.2 19.4 17.5 15.1 18.2 19.5 1.06 1.07 0.97 0.83 1.01 1.08
Rb 99.7 83.9 64.6 67.0 67.0 84.0 1.35 1.13 0.87 0.91 0.91 1.14
S 315 197 247 1179 354 151 1.21 0.76 0.95 4.51 1.35 0.58
Sb 0.62 0.51 0.70 0.63 0.70 0.66 0.94 0.77 1.06 0.96 1.07 1.00
Sc 13.6 15.3 13.4 13.4 16.4 8.9 0.99 1.12 0.98 0.98 1.20 0.65
Se 0.14 0.14 0.16 0.21 0.17 0.16 0.93 0.87 1.05 1.36 1.07 1.00
Sn 2.93 2.90 2.14 1.90 2.66 2.39 1.18 1.17 0.86 0.77 1.07 0.96
Sr 157 225 299 276 319 295 0.60 0.86 1.14 1.05 1.22 1.12
Ta 1.15 1.17 1.07 0.85 1.32 1.07 1.04 1.06 0.97 0.77 1.20 0.97
Te 0.050 0.045 0.052 0.053 0.050 0.040 1.00 0.90 1.04 1.06 1.00 0.80
Th 11.8 12.6 9.01 8.72 9.15 7.46 1.15 1.22 0.87 0.85 0.89 0.72
Ti 3931 4341 4320 3860 4924 3016 0.94 1.04 1.03 0.92 1.18 0.72
Tl 0.56 0.49 0.36 0.50 0.35 0.46 1.32 1.16 0.84 1.18 0.83 1.08
U 3.02 2.90 2.40 2.54 2.28 1.98 1.18 1.13 0.94 0.99 0.89 0.77
V 88.2 84.4 85.0 75.0 80.4 60.0 1.05 1.01 1.01 0.89 0.96 0.71
W 2.37 2.08 1.29 1.13 1.26 1.63 1.48 1.30 0.81 0.70 0.79 1.02
Zn 79.5 71.0 61.0 55.5 74.0 47.0 1.19 1.07 0.92 0.83 1.11 0.71
Zr 236 310 320 275 306 201 0.83 1.09 1.12 0.96 1.07 0.70
Y 31.6 32.1 26.1 21.7 29.3 21.6 1.14 1.16 0.95 0.79 1.06 0.78
La 35.7 37.0 29.8 27.5 35.3 21.4 1.10 1.14 0.92 0.85 1.09 0.66
Ce 68.5 71.1 59.2 57.7 71.0 39.5 1.07 1.11 0.93 0.91 1.11 0.62
Pr 8.67 9.07 7.45 7.19 8.51 5.51 1.08 1.14 0.93 0.90 1.07 0.69
元素 1 2 3 4 5 6 RCC1 RCC2 RCC3 RCC4 RCC5 RCC6
Nd 32.8 34.9 28.6 26.8 33.7 21.4 1.07 1.14 0.94 0.88 1.10 0.70
Sm 6.66 7.41 6.15 5.90 7.14 4.42 1.04 1.16 0.96 0.93 1.12 0.69
Eu 1.27 1.49 1.43 1.54 1.45 1.19 0.91 1.08 1.03 1.11 1.04 0.86
Gd 6.15 6.61 5.24 4.79 6.31 3.31 1.10 1.18 0.93 0.85 1.12 0.59
Tb 0.99 1.10 0.88 0.84 1.07 0.62 1.05 1.17 0.94 0.89 1.14 0.66
Dy 5.87 6.57 5.48 5.25 6.16 3.85 1.05 1.17 0.98 0.93 1.10 0.68
Ho 1.14 1.36 1.15 1.10 1.29 0.82 0.99 1.18 1.00 0.96 1.12 0.71
Er 3.30 3.74 3.03 2.88 3.63 2.09 1.05 1.19 0.96 0.92 1.16 0.66
Tm 0.53 0.64 0.53 0.51 0.63 0.40 0.99 1.19 0.99 0.96 1.18 0.74
Yb 3.38 3.96 3.24 3.11 3.77 2.46 1.02 1.20 0.98 0.94 1.14 0.75
Lu 0.54 0.62 0.52 0.52 0.60 0.39 1.02 1.17 0.98 0.98 1.13 0.73
SiO2 62.3 61.7 62.0 62.9 59.7 58.9 1.01 1.00 1.00 1.02 0.97 0.95
Al2O3 12.9 13.0 12.5 12.9 12.6 12.3 1.02 1.03 0.99 1.02 1.00 0.98
Fe2O3 5.21 5.23 4.89 4.38 5.81 3.93 1.05 1.05 0.98 0.88 1.17 0.79
MgO 2.20 2.13 1.88 1.83 2.46 1.47 1.11 1.07 0.95 0.92 1.24 0.74
CaO 2.65 3.38 4.64 3.79 5.03 6.17 0.64 0.82 1.12 0.92 1.22 1.49
Na2O 2.16 2.31 2.63 2.90 2.60 2.79 0.88 0.94 1.07 1.18 1.06 1.14
K2O 2.47 2.24 2.16 2.22 2.14 2.55 1.10 1.00 0.96 0.99 0.95 1.14
OrgC 1.31 0.71 0.41 0.51 0.51 0.36 2.39 1.29 0.75 0.93 0.93 0.65
TC 1.82 0.95 0.70 0.53 1.20 0.91 2.05 1.07 0.79 0.60 1.36 1.03
Table 2  
Fig.2  阿尔泰构造带区域浓集系数对比
Fig.3  阿尔泰南缘弧盆系区域浓集系数对比
Fig.4  东西准噶尔弧盆系区域浓集系数对比
Fig.5  准噶尔地块区域浓集系数对比
Fig.6  戈壁阿尔泰弧盆系区域浓集系数对比
Fig.7  北山—戈壁天山弧盆系区域浓集系数对比
[1] Clarke F W, Washington H S . The composition of the Earth’s crust[J]. U. S. Geological Survey Professional Paper, Washington. D. C., 1924: 127.
[2] Turekian K K, Wedepohl K H . Distribution of the elements in some major units of the Earth’s curst[J]. Gelogical Society of America Bulletin, 1961,72(2):175-192.
[3] Vinogradov A P . Average content of chemical elements in the major types of igneous rocks of the Earth’s crust[J]. Geochemistry, 1962,( 7):641-664.
[4] Taylor S R, Mclennan S M . The continental crust: its composition and evolution[M]. Oxford: Blackwell Scientific Publications, 1985: 312.
[5] Rudnick R L, Gao shan. Composition of the continental crust[M]. Treatise on Geochemistry, 2003: 1-64.
[6] Wedepohl K H . The composition of the continental crust[J]. Geochimica Cosmochimica Acta, 1995,59(7):1217-1232.
[7] 黎彤, 倪守斌 . 地球和地壳的化学元素丰度[M]. 北京: 地质出版社, 1990.
[7] Li T, Ni S B. The abundances of chemical elements in the Earth and its crust[M]. Beijing: Geological Publishing House, 1990.
[8] 史长义, 鄢明才, 刘崇明 , 等. 中国花岗岩类化学元素丰度及特征[J]. 地球化学, 2005,34(5):470-482.
[8] Shi C Y, Yan M C, Liu C M , et al. Abundances of chemical elements in granitoids of China and their characteristics[J]. Geochemica, 2005,34(5):470-482.
[9] 鄢明才, 迟清华 . 中国东部地壳与岩石的化学组成[M]. 北京: 地质出版社, 1997.
[9] Yan M C, Chi Q H. The chemical compositions of crust and rocks in the Eastern part of China[M]. Beijing: Science Press, 1997.
[10] Reimann C, Filzmoser P, Garrett R G . Background and threshold: Critical comparison of methods of determination[J]. Science of the Total Environment, 2005,346(1-3):1-16.
[11] Reimann C, Garrett R G . Geochemical background-concept and reality[J]. Science of the Total Environment, 2005,350(1-3):12-27.
[12] Salminen R, Gregorauskiene V . Considerations regarding the definition of a geochemical baselines of elements in the surficial materials in areas differing in basic geology[J]. Applied Geochemistry, 2000,15(5):647-653.
[13] Albanese S, De Vivo B, Lima A , et al. Geochemical background and baseline values of toxic elements in stream sediments of Campania region (Italy)[J]. Journal of Geochemical Exploration, 2007,93(1):21-34.
[14] Reimann C, De Caritat P . Establishing geochemical background variation and threshold values for 59 elements in Australian surface soil[J]. Science of the Total Environment, 2017,578:633-648.
[15] Reimann C, Fabian K, Birke M , et al. GEMAS: Establishing geochemical background and threshold for 53 chemical elements in European agricultural soil[J]. Applied Geochemistry, 2018,88:302-318.
[16] Tarvainen T, Kallio E . Baselines of certain bioavailable and total heavy concentrations in Finland[J]. Applied Geochemistry, 2002,17:975-980.
[17] 成杭新, 李括, 李敏 , 等. 中国城市土壤化学元素的背景值与基准值[J]. 地学前缘, 2014,21(3):265-306.
doi: 10.13745/j.esf.2014.03.028
[17] Cheng H X, Li K, Li M , et al. Geochemical background and baseline value of chemical elements in urban soil in China[J]. Earth Science Frontiers, 2014,21(3):265-306.
[18] 程志中, 谢学锦, 潘含江 , 等. 中国南方地区水系沉积物中元素丰度[J]. 地学前缘, 2011,18(5):289-295.
[18] Cheng Z Z, Xie X J, Pan H J , et al. Abundance of elements in stream sediment in South China[J]. Earth Science Frontiers, 2011,18(5):289-295.
[19] 迟清华, 鄢明才 . 应用地球化学元素丰度数据手册[M]. 北京: 地质出版社, 2007.
[19] Chi Q H, Yan M C. Handbook of Elemental Abundance for Applied Geochemistry[M]. Beijing: Geological Publishing House, 2007.
[20] 王学求, 周建, 徐善法 , 等. 全国地球化学基准网建立与土壤地球化学基准值特征[J]. 中国地质, 2016,43(5):1469-1480.
[20] Wang X Q, Zhou J, Xu S F , et al. China soil geochemical baselines networks: Data characteristics[J]. Geology in China, 2016,43(5):1469-1480.
[21] 史长义, 梁萌, 冯斌 . 中国水系沉积物39种元素系列背景值[J]. 地球科学, 2016,41(2):234-251.
[21] Shi C Y, Liang M, Feng B . Average background values of 39 chemical elements in stream sediments of China[J]. Earth Science, 2016,41(2):234-251.
[22] 邹天人, 李庆昌 . 中国新疆稀有及稀土金属矿床[M]. 北京: 地质出版社, 2006, 34-170.
[22] Zou T R, Li Q C. Rare and rare earth metal deposits in Xinjiang, China[M]. Beijing: Geological Publishing House, 2006, 34-170.
[23] Wang X Q, Chi Q H, Liu H Y , et al. Wide-spaced sampling for delineation of geochemical provinces in desert terrains, northwestern China[J]. Geochemistry: Exploration, Environment, Analysis, 2007,7(2):153-161.
[24] 刘汉粮, 聂兰仕, 王学求 , 等. 中蒙跨境阿尔泰构造带稀有元素锂区域地球化学分布[J]. 现代地质, 2018,32(3):493-499.
[24] Liu H L, Nie L S, Wang X Q , et al. Regional geochemistry of lithium in the Altay area across the boundary of China and Mongolia[J]. Geoscience, 2018,32(3):493-499.
[25] 刘汉粮, 聂兰仕, 王学求 , 等. 中蒙跨境阿尔泰地区铍区域地球化学特征[J]. 地质与勘探, 2019,55(1):95-102.
[25] Liu H L, Nie L S, Wang X Q , et al. Regional geochemistry of beryllium in the Altay area across the border between China and Mongolia[J]. Geology and Exploration, 2019,55(1):95-102.
[26] 刘汉粮, 王学求, 聂兰仕 , 等. 阿尔泰成矿带中蒙边界地区稀有元素铌和钽区域地球化学特征[J]. 现代地质, 2018,32(5):1063-1073.
[26] Liu H L, Wang X Q, Nie L S , et al. Regional geochemistry of niobium and tantalum across the boundary of China and Mongolia in the Altay metallogenic belt[J]. Geoscience, 2018,32(5):1063-1073.
[27] 张勤, 白金峰, 王烨 . 地壳全元素配套分析方案及分析质量监控系统[J]. 地学前缘, 2012,19(3):33-42.
[27] Zhang Q, Bai J F, Wang Y . Analytical scheme and quality monitoring system for China Geochemical Baselines[J]. Earth Science Frontiers, 2012,19(3):33-42.
[28] 史长义 . 勘查数据分析(EDA)技术的应用[J]. 地质与勘探, 1993,29(11):52-58.
[28] Shi C Y . Application of the exploratory data analysis technique[J]. Geology and Exploration, 1993,29(11):52-58.
[29] Kürzl H . Exploratory data analysis: recent advances for the interpretation of geochemical data[J]. Journal of Geochemical Exploration, 1988,30:309-322.
[30] 李俊建, 张锋, 任军平 , 等. 中蒙边界地区构造单元划分[J]. 地质通报, 2015,34(4):636-662.
[30] Li J J, Zhang F, Ren J P , et al. Tectonic units in China-Mongolia border area and their fundamental characteristics[J]. Geological Bulletin of China, 2015,34(4):636-662.
[31] 谢学锦, 刘大文, 向运川 , 等. 地球化学块体-概念和方法学的发展[J]. 中国地质, 2002,29(3):225-233.
[31] Xie X J, Liu Da W, Xiang Y C , et al. Geochemical blocks—Development of concept and methodology[J]. Geology in China, 2002,29(3):225-233.
[1] 欧阳玉飞, 刘继顺, 韩海涛, 仇仲学, 刘卫明. 新疆阿尔泰地区蒙库—可可塔勒铁矿带C7磁异常地面查证效果及铁矿远景[J]. 物探与化探, 2009, 33(3): 266-269.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com