E-mail Alert Rss
 

物探与化探, 2019, 43(1): 70-76 doi: 10.11720/wtyht.2019.1344

地质调查·资源勘查

CO2气体测量方法在低山丘陵区隐伏矿勘查的试验研究

万卫1,2,3, 陈振亚,4, 程志中3, 潘含江5, 秦欢欢1, 赖冬蓉1

1. 东华理工大学 核资源与环境国家重点实验室,江西 南昌 300013

2. 东华理工大学 地球科学学院,江西 南昌 300013

3. 中国地质调查局 发展研究中心,北京 100037

4. 新疆维吾尔自治区地质矿产勘查开发局 第一区域地质调查大队,新疆 乌鲁木齐 830011

5. 中国地质科学院 地球物理地球化学勘查研究所,河北 廊坊 065000

Pilot study of CO2 gas measurement method for mineral exploration in hilly areas

WAN Wei1,2,3, CHEN Zhen-Ya,4, CHENG Zhi-Zhong3, PAN Han-Jiang5, QIN Huan-Huan1, LAI Dong-Rong1

1. State Key Laboratory of Nuclear Resources and Environment, East China Institute of Technology, Nanchang 300013, China

2. Faculty of Earth Sciences,East China Institute of Technology, Nanchang 300013,China

3. Development and Research Center of China Geological Survey,Beijing 100037,China

4. No. 1 Geological Survey Party,Xinjiang Bureau of Geology and Mineral Exploration and Mining,Urumqi 830011,China

5. Institute of Geophysical and Geochemical Exploration,Chinese Academy of Geological Sciences,Langfang 065000,China

通讯作者: 陈振亚(1986-),男,工程师,2014年毕业于中国地质大学(北京)地球化学专业,获硕士学位。Email:619534449@qq.com

责任编辑: 蒋实

收稿日期: 2018-09-20   修回日期: 2018-11-16   网络出版日期: 2019-02-20

基金资助: 中国地质调查局地质调查项目.  12120113086000
东华理工大学博士科研启动基金.  DHBK2017107
核资源与环境国家重点实验室开放基金.  NRE1808

Received: 2018-09-20   Revised: 2018-11-16   Online: 2019-02-20

作者简介 About authors

万卫(1989-),男,讲师,2017年毕业于中国地质大学(北京)地球化学专业,获博士学位。Email:631178404@qq.com

摘要

为了研究CO2气体测量方法在低山丘陵区隐伏矿勘查的应用效果,采用改进的CO2快速分析仪分别对湖南黄金洞金矿区金枚矿段和梨树坪矿段进行了CO2气体测量试验性研究和面积性测量研究。结果表明,CO2气体测量方法在低山丘陵区能够发现深部隐伏矿和构造信息,并为梨树坪矿段圈定了3个找矿靶区,具有重要的实际意义,为我国覆盖区隐伏矿勘查突破积累了数据和经验。

关键词: 气体测量 ; 二氧化碳 ; 低山丘陵区 ; 隐伏矿

Abstract

To study the effectiveness of CO2 gas measurement method in the exploration for concealed mineral deposits in hilly areas,the authors carried out pilot study and area study by employing CO2 gas measurement with rapid gas analytical techniques at Jinmei ore block and Lishuping ore block of Huangjindong mining area,respectively. The results indicate that CO2 gas measurement method can discover the information around deeply buried mineral deposits and deep-seated structures. Having delineated three prospecting target areas for Lishuping ore block, it is proved to have important practical significance and can accumulate data and experience for concealed mineral exploration in covered areas.

Keywords: gas measurement ; carbon dioxide ; hilly area ; concealed deposit

PDF (1057KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

万卫, 陈振亚, 程志中, 潘含江, 秦欢欢, 赖冬蓉. CO2气体测量方法在低山丘陵区隐伏矿勘查的试验研究. 物探与化探[J], 2019, 43(1): 70-76 doi:10.11720/wtyht.2019.1344

WAN Wei, CHEN Zhen-Ya, CHENG Zhi-Zhong, PAN Han-Jiang, QIN Huan-Huan, LAI Dong-Rong. Pilot study of CO2 gas measurement method for mineral exploration in hilly areas. Geophysical and Geochemical Exploration[J], 2019, 43(1): 70-76 doi:10.11720/wtyht.2019.1344

0 引言

随着近几十年我国矿产地质勘查程度的加深和地质找矿工作的不断深入,地表矿产资源的开发前景不容乐观,已发现矿产资源量的开发几近枯竭,我国的金属矿产地质勘查已经逐步进入了寻找隐伏矿、盲矿和难识别矿产的攻深找盲阶段,找矿难度越来越大。在新的一轮找矿勘查工作中,要想取得更大的突破,必须加强覆盖区地球化学勘查技术的研究。气体地球化学测量方法由于其强穿透性和垂直向上迁移的机制,且在覆盖区能够快速发现找矿信息,圈定断裂构造和矿化体,被认为是覆盖区找矿有前景的地球化学勘查方法之一,受到勘查地球化学界的重视。

当前,气体地球化学测量方法的常用指标有汞气、CO2、SO2、H2S、Rn、CH4、He和有机烃气等[1,2,3,4,5,6,7,8,9,10],其中汞气测量方法研究最为系统,并在覆盖区地质找矿工作了发挥了很大的作用,在国内外隐伏矿勘查和断裂识别工作中取得了不错的效果[11,12,13,14,15,16]。CO2作为20世纪80年代以后开发的气体地球化学测量指标,在国内外矿产地质勘查中也取得了一定的效果,1983年Lovell等在干旱—半干旱区隐伏矿上方观察到了清晰的CO2异常[17];Hinkle等于1984年在美国图森斑岩型铜矿上方观察到了强烈的CO2异常[18];1986年刘庆余在某金、铀床上使用快速滴定管进行了CO2测量实验,取得了明显的地质效果[19];1986年高乾兰在多个地区野外工作中发现CO2测量可适用于勘探阶段的晚期,能快速获得有关寻找已知矿体的信息[20];Polito等于2002年通过便携式快速分析仪对造山带金矿床进行了CO2测量方法的研究,结果表明CO2异常范围与深部矿化位置相一致[21];2006年张洁等采用气体快速分析仪对草原覆盖区和南方红壤区隐伏矿床开展了CO2测量试验性研究,结果表明CO2测量方法能有效发现深部盲矿的信息[22]。尽管CO2测量方法在国内外地质找矿工作取得一些成功的经验,但是其发展前景也遇到了一些阻碍,测量仪器低效、测试精度不够、测试材料昂贵和测试时间长等均不符合当前地质勘查工作的发展需要。对于CO2测量而言迫切需要一种高灵敏度、快速、经济、省时和高效的测量测试分析方法。

目前,由于我国测试技术的加速发展,气体测量技术也取得了很大的进步。通过红外吸收光谱法检测CO2,方法检出限可达到1×10-6,能够帮助地质工作者发现土壤中低含量的CO2。本次研究使用改进的CO2快速分析分析仪对低山丘陵区湖南黄金洞金矿典型剖面进行CO2气体测量方法试验,探讨CO2气体测量方法在低山丘陵区隐伏矿勘查的有效性,然后在黄金洞梨树坪矿段未知区开展1∶2万面积性CO2气体测量,通过解释气体异常,圈定找矿靶区,为我国覆盖区气体地球化学勘查技术突破积累经验和数据。

1 CO2气体测量方法原理

本次研究采用红外吸收光谱法对CO2进行检测,CO2的特征吸收峰一般为4.26 μm。红外光谱定量分析是以朗伯—比尔定律为基础的。待测气体可以直接吸收光源发射的单色红外光,因此CO2气体的浓度可以通过直接测定吸光度获得。单色红外光(波长4.26 μm)通过两个气室,一个是测量气室,里面充以不断流过的被测气体,另一个参比气室,里面充以无吸收性质的背景气体。仪器工作时,红外光源发出的红外光通过窗口特殊材料入射到测量气室,测量气室由抽气泵连续吸入待测CO2气体,CO2气体能够吸收波长为4.26 μm的红外光。当测量气室待测气体浓度发生明显变化时,其吸收的红外线光量也会发生相应的变化,而基准光束(参比气室光束)的光量保持不变。从两个气室出来的光量差一通过检测器,检测器就将产生明显的压力差,并转化为电容检测器的电信号。电信号经信号调节电路放大处理后,送往显示器以及总控的CRT显示器上。此输出信号的大小与待测组分的浓度成正比例,从而能够获得CO2的浓度数据[22]

2 研究区地质地理概况

湖南黄金洞金矿地处湖南东北部平江县内,是湖南省4大黄金生产基地之一。研究区为冷家溪群地层组成的构造剥蚀低山丘陵地形[23],最高为矿区东部的山尖峰,其标高为694.45 m,最低位于矿区北西角樟树潭冲积平原,其标高119.80 m,二者高差574.65 m,总地势东高西低。区内地形切割厉害,沟谷发育,切割深度大于150 m。第四系较为发育,第四系沉积物主要为残坡积层及冲积层,主要成分为黏土、砂土及岩屑等,覆盖层最薄的地方有2 m,最厚的剖面达20 m。研究区属亚热带季风性气候,温暖潮湿,雨量充沛,年平均气温16.8℃,年平均降雨量1 532.5 mm,年平均蒸发量1 268.7 mm,雨量集中于每年4~7月,日最大降水量达223.9 mm。

黄金洞金矿区位居扬子板块东南缘,隶属江南古陆造山带中段,处于扬子板块与华南板块的会聚碰撞带上。矿区内主要出露地层为元古宇冷家溪群第三岩组和第四岩组(图1)。区内构造较为发育,主要构造为NWW向倒转复式背向斜构造,沿其轴向方向成群分布着一系列EW向、NNW向、SEE向挤压破碎带,控制着研究区内金矿的空间规模和分布。区内岩浆活动强烈,且呈多期多阶段,主要有雪峰期、加里东期、印支期和燕山早期中酸性侵入岩,加里东期岩浆活动提供了本区金成矿的主要岩浆热液来源,研究区金成矿与燕山期岩浆热液活动密切相关。岩浆岩在矿区及外围很少出露,均被第四系冲洪积物覆盖。围岩蚀变强烈,主要发育硅化、毒砂化、黄铁矿化、方解石化和绿泥石化等。金矿化与黄铁矿化、毒砂化、硅化密切相关,这些围岩蚀变对金矿体的形成与富集起到关键作用,方解石化、绿泥石化与金成矿基本无关[24,25]

图1

图1   黄金洞金矿区地质图(改编自参考文献[28])

1—韧性推覆剪切带;2—断裂;3—花岗岩;4—金矿床;5—地质界线;6—矿脉;7—倒转向斜;8—倒转背斜;9—古近系新余组;10—白垩系上统戴家坪组;11—冷家溪群第四岩性第一岩组;12—冷家溪群第四岩性第二岩组

Fig.1   The geological map of Huangjindong mining area(adopted from a bibliography[28])

1—ductile nappe shear zone; 2—fracture; 3—granite; 4—gold deposit; 5—geological boundary; 6—ore vein; 7—reversed synellne; 8—reversed anticline; 9—Paleogene Xinyu formation; 10—Upper Cretaceous Daijiaping formation; 11—1st petrofabric of the 4th fithological member of Lengjiaxi group; 12—2nd petrofabric of the 4th fithological member of Lengjiaxi group


黄金洞金矿矿体主要产于中元古界冷家溪群浅变质碎屑岩中,受层位控制明显。矿体控制长度大概为30~1 000 m,沿倾向延伸约为20~1 240 m,矿体呈似层状、脉状形态为主,具分支复合,尖灭再现特点。主要矿石类型为含金石英脉型、含金蚀变板岩型和含金蚀变碎裂板岩型矿石。主要金属矿物成分为毒砂和黄铁矿,其次为方铅矿、闪锌矿和黄铜矿等,脉石矿物以石英为主,绢云母、方解石、白云石、绿泥石等次之[26,27]。矿体多被第四系冲洪积物覆盖,且覆盖层组分均一,适合开展气体地球化学测量方法的研究。

3 采样方法和分析方法

在预设定点位上用铲子清除10~15 cm厚的表层有机质和土壤后,用铁锤将钢钎打入疏松覆盖层内0.6~0.7 m,拔出钢钎后立即将螺旋采样器旋入孔内0.4~0.5 m深处,用硅胶管依次将螺旋采样器、干燥器、过滤器和CO2快速分析仪连接好,抽气前检查是否漏气,然后开启仪器,通过抽气泵抽取气体(图2)。仪器开始对CO2进行测量后,CO2的测试计数会逐渐增加,当仪器测试计数达到最大值后计数会逐渐减少,最大值即为该测试点的实际测量值,测量时间一般为30~60 s,现场读取测量数据。CO2测量仪器型号为JFQ-3150E,分析检测限能达到1×10-6,能够应用于覆盖区隐伏矿地球化学勘查。CO2气体测量过程中要详细记录采样深度、疏松沉积物特征、植被状况等条件。每天还需记录开始工作时间,早、中、晚的天气状况,0.5 m处的地温和湿度。

图2

图2   气体测量装置结构

Fig.2   Schematic of the device for gas measurement


4 测量方法试验研究

4.1 重现性试验

为了验证CO2气体测量方法的重现性,本次研究对黄金洞矿区梨树坪矿段11号线相同的采样点进行了CO2重复性测量试验,时间相差一个月。从测量结果来看(图3),不同时间测量结果一致性较好,不仅CO2含量分布趋势一致,而且含量也非常接近,CO2异常峰值对应性也较好,证明了CO2气体测量方法具有一定的重现性。

图3

图3   黄金洞矿区梨树坪矿段11号线CO2重复性测量结果

Fig.3   Distribution of repeated measurement results of CO2 in soil gases along No.11 line at Lishuping ore block


4.2 已知矿段有效性试验

为了探讨CO2气体测量方法在黄金洞矿区的应用效果,根据试验区地形及控矿地质条件,在已知矿(化)体上方,采用剖面测量方法进行试验研究。通过已知矿体上方气体异常分布特征研究,了解CO2气体测量方法在覆盖区矿产勘查的优越性和有效性,为面积性气体测量结果解释提供依据。

本次试验研究选择黄金洞矿区金枚矿段36线(107号脉)作为典型剖面,剖面试验段已完钻2孔,矿体埋深0~300 m,测线穿越矿脉并适度延长至背景区。该矿脉位于金枚矿段的最南部,矿脉出露走向长达1 200 m,走向NW,倾向NE,倾角变化在23°~88°之间,一般为40°~60°(图4),向深部产状逐渐变缓,破碎带发育且有厚度不一的蚀变带,金矿脉主要赋存于破碎带和蚀变带内。试验剖面走向NE,测量路线由NE到SW。测线长度700 m,点距20 m,现场读取测量指标CO2在金矿脉上方的含量变化,共计35个测量点。

图4

图4   黄金洞矿区金枚矿段36线CO2测量剖面

Fig.4   Distribution of CO2 in soil gases along No.36 line at Jinmei ore block of Huangjindong mining area


试验结果显示(图4),CO2在已经矿体上方有异常显示,沿着矿体倾向方向CO2异常范围较宽,异常位置基本与矿体空间位置吻合,且在300 m深的矿体上方依然有落异常显示,说明了CO2测量方法能够完全反应矿化体的特征,且具有较大的探测深度,可以作为寻找盲矿体的有效指标,CO2测量方法可为本区进一步的隐伏矿勘查提供服务。

5 测试方法实例应用

在试验结果的基础上,对梨树坪矿段进行CO2气体面积性测量研究。黄金洞矿区梨树坪矿段为一未知区,前人在区内东南部开展的地质勘查工作主要有槽探、剥土,发现两条断裂破碎带,推测走向NWW,倾角40°,延伸长度推测2 km。区内东北部有小的石英脉发育。由于土壤覆盖厚度达1~5 m,常规的地质找矿方法在试验区效果不理想,未能完全提取本区的地球化学异常信息。

梨树坪矿段设计试验区面积4 km2,布置11条勘探线,其中勘探线间距200~300 m,点距10~30 m;在异常区适当加密到10 m,背景区点距放宽到30 m。试验区共完成数据点698个。野外工作过程中记录当天天气、气温、地表植被种类、土壤类型和土壤干湿程度,为后期数据分析过程中提供异常解释的依据。

5.1 气体含量特征

梨树坪矿段CO2面积性测量结果参数统计见表1,由表中可以看出,梨树坪矿段土壤中CO2含量最大值为5.53%,最小值为0.01%,平均值为0.58%。CO2含量变异系数大于1,说明CO2的含量变化范围较大,且存在较为明显的CO2异常,可能与区内存在断裂破碎带和金矿化有关。

表1   黄金洞矿区梨树坪矿段CO2面积测量结果统计参数

Table 1  Statistical parameters of CO2 area measurement results at Lishuping ore block

参数数值
最大值/%5.53
最小值/%0.01
极值比553
平均值/%0.58
背景值/%0.5
标准差0.6
变异系数1.03

新窗口打开| 下载CSV


5.2 气体空间分布特征

气体测量受温度、湿度等外界条件影响较显著,由于试验区的天气状况和勘探线土壤特征等因素,造成野外采集的数据绝对值相差较大。试验区野外测得CO2含量最大值超过仪器最大量程范围的10%,然而测得的CO2最小含量值仅为0.01%,可知试验受到物化条件影响大。土壤中有机质的含量也影响CO2的含量,在一些地势较低的地段,土壤中有机质含量较低,土壤湿度较大,其CO2含量值也较高。若采用原始数据作图,数据的跳变将影响异常下限的确定,不易提取异常信息且可能漏掉不明显的异常区域。故为了消除每天外界条件不同所引起的测量系统误差,采用气体测量结果的每日衬度值作图,即每个点位CO2含量除以当日测量结果的平均值。

面积性测量结果显示(图5),在研究区内,发现CO2衬值异常5处,异常形态多为椭圆型,长150~700 m,宽100~300 m,长轴方向呈NW—SE向延伸,异常总体上表现为明显的带状分布,与黄金洞矿区矿体走向分布一致。5处异常表现为三级异常分带明显,且均具有较清晰的浓集中心。其中4号异常区位于探槽确定的断裂破碎带上方,为地质勘查已确定的矿体;5号异常区与前人推测的断裂破碎带位置相吻合,虽然尚未有工程验证,但在一定程度上可能指示深部存在矿体。本次面积性测量新发现的1号、2号、3号异常位于未知区,结合黄金洞矿区矿体分布规律和本次异常分布结果来看,1号异常区和3号异常区可能指示了同一条矿体,而2号异常区可能指示另外一条矿体。

图5

图5   黄金洞矿区梨树坪矿段CO2气体测量异常

Fig.5   Anomalous map of CO2 in soil gases at Lishuping ore block of Huangjindong mining area


通过对梨树坪矿段的CO2面积性测量试验,可以发现CO2测量方法对反映深部隐伏矿体和断裂构造有较好的效果,且本次圈定的1号、2号、3号和5号异常具有较大的找矿远景,可作为本区下一步金矿勘查的重点区域。

6 结论

1) 红外吸收光谱法能检测到土壤中极微量的CO2,检出限能达到1×10-6,能够有效地发现覆盖区深部矿(化)体和构造上方的CO2异常,符合现代矿产勘查工作的需要。

2) 黄金洞矿区金枚矿段36线CO2测量试验和梨树坪矿矿段CO2面积性试验结果表明,CO2在已经矿(化)体和断裂破碎带上方有明显的异常显示,说明CO2测量方法对低山丘陵区隐伏矿勘查是有效的,可为该区进一步深部找矿突破提供服务。

3) 对黄金洞金矿区梨树坪矿段开展的CO2气体面积性测量,共圈定了1号、2号、3号和5号共4处找矿靶区,可作为研究区下一步地质勘查的重点区域。

4) CO2测量方法具有快速、探测深度大的特点,能在野外直接读数,能对覆盖区进行快速评价,减小工作周期,与其他勘查地球化学、地球物理方法及地质方法配合使用,可第一时间提供有效的找矿信息。

The authors have declared that no competing interests exist.
作者已声明无竞争性利益关系。

参考文献

陈远荣, 庄晓蕊 .

金属矿床有机烃气常见异常模式和成因机理研究

[J]. 矿产与地质, 2001,15(6):738-742.

DOI:10.3969/j.issn.1000-3657.2001.04.006      URL     [本文引用: 1]

作者通过对十几个典型金属矿床进行试验研究后,初步总结了各类金属矿床上方,有机烃气和汞气的常见模式,即不对称对偶双峰式、对称对偶双峰式、顶端单峰(或峰丛)式和双峰、单峰混合式。并从烃气和汞的运移通道、成矿期的热差效应、金属硫化物的氧化作用、氧化还原条件等方面剖析了这些异常模式的成因机制。

Chen Y R, Zhuan X R .

The common anomaly pattern of organic hydrocarbon of metallic ore deposit and its mechanism study

[J]. Mineral Resources and Geology, 2001,15(6):738-742.

[本文引用: 1]

Duchscherer J W .

Geochemical hydrocarbon exploration-a new/old exploration tool

[J]. Journal of Geochemical Exploration, 1983,19(2):335-336.

DOI:10.1016/0375-6742(83)90025-0      URL     [本文引用: 1]

The search for petroleum has evolved into a highly sophisticated technology where today almost every scientific discipline known is being brought to bear upon the endeavour. Yet, the use of geochemical hydrocarbon exploration remains a peripheral exploration tool. The trend toward scientific integration has led the petroleum explorationist to the point of being a specialist. It would seem that our petroleum scientists have focussed their interests mainly on the investigation of principles and less on their ultimate purpose of discovering new and larger oil and gas reserves. So, it is not by chance, that leading geochemists have been speaking more and more freely of the necessity to integrate our tools of exploration and thereby do a better job. The theoretical basis for hydrocarbon geochemistry is complex, and, as with all exploration tools, the problems and difficulties of interpreting the data will never be completely eliminated. This article considers the importance of using the ΔC method in geochemical hydrocarbon exploration which has been employed successfully for over 40 years. The addition of carbon-isotope ratios and trace-element analysis to this method has added a new dimension to geochemical hydrocarbon exploration. The theoretical basis of the ΔC method has been presented earlier by the author and will only be touched upon briefly here. Very simply, the basis of all geochemical hydrocarbon exploration is based on the much debated premise that the lighter hydrocarbon gases and their components migrate vertically from a trap through the overlying sedimentary pile to the surface. Upon reaching the surface, through oxidation, they leave their signatures in one form or another that can be detected by physicochemical methods. These physicochemical signatures are discernable as “geochemical haloes”. From soil samples, collected from 2–3 m deep, what is measured is the result of absorption and adsorption by soil particles that are altered to CO 2 by oxidation and form a unique, stable, carbonate system with the surface and near-surface material. This is unlike other carbonate systems and when subjected to a differential thermal technique, dissociates into CO 2 surface material is cumulative and indicates where maximum hydrocarbon leakage has taken place over the life span of the material sampled. It is durable and unaffected by pressure and temperature variation or recent hydrocarbon contamination. Values are expressed in terms of millivolts which are proportional to the CO 2 given off by the dissociation of the carbonate system under standard conditions. Frequency curves are constructed for all values for the determination of significant contour levels above the normal geochemical background for mapping. After significant ΔC anomalies are located, they can be further verified by use of carbon-isotope ratios. As methane migrates to the surface from underlying hydrocarbon accumulations, there is a progressive selection or fractionation that causes enrichment of the carbon-13 isotope. The methane, thus reaching the near-surface, is isotopically lighter. When oxidized in accordance with the equation CH 4 + 2O 2 → 2H 2O + CO 2, the carbon having been converted to carbon dioxide, is taken up in the pore-filling carbonate cements that are found in the near-surface soils and sediments. High carbon dioxide values (ΔC) in the geochemical halo are related the δ 13C carbon-isotope ratios from underlying hydrocarbon accumulations. This is observed over fields containing hydrocarbon accumulations where δ 13C values in the pore-filling carbonate cements become increasingly negative (lighter) toward the crests of traps (i.e. exhibiting lower ΔC values). This indicates enrichment of 12C relative to the PDB standard. Whereas, positive values of δ 13C indicate depletion in 12C or enrichment in 13C (i.e. exhibiting higher ΔC values away from the crests of the traps). The observed ΔC anomalies and δ 13C anomalies leave an indelible pattern in the near-surface sediments and soils which are herein referred to as geochemical hydrocarbon haloes. Trace-element associations, that form organometallic compounds, are found “haloed” or concentrated over or around underlying hydrocarbon reservoirs. These associations seem to have occurred from vertically migrating methane that has acted as a “carrier” sweeping up the trace elements on the pathways to the surface. Vanadium, nickel, chromium, iron, cobalt, copper, manganese, strontium, barium are various trace element ratios seen to also halo and indicate subsurface hydrocarbon accumulations. An example presented from the Ocho-Juan Field, a producing reef field, located in Scurry and Fisher Counties, Texas shows that the combination of ΔC, δ 13C and trace-element analysis from near-surface soil sampling is a significant step forward in improving geochemical hydrocarbon exploration methods.

崔熙琳, 汪明启, 唐金荣 .

金属矿气体地球化学测量技术新进展

[J]. 物探与化探, 2009,33(2):135-139.

URL     Magsci     [本文引用: 1]

气体地球化学测量方法由于气体的强穿透性,可将大量的与深部矿化作用有关的物质携带到地表,可直接或间接指示各种地质成矿过程,而受到勘查地球化学的重视。经历数十年的发展之后,气体地球化学测量在测量指标、方法及影响因素研究方面都取得了长足进展。特别是近年来由于分析技术提高,使得很多超微含量的气体测定成为可能,一些新的气体测量方法相继提出,在寻找隐伏矿或盲矿方面获得了较好的效果。笔者对气体测量发展史、气体测量方法、指标及影响因素进行了简单总结,并重点介绍了一种新的气体测量技术(SDP)的测量原理、使用方法及应用实例。

Cui X L, Wang M Q, Tang J R .

New advances in gas geochemical exploration for metallic ore deposits

[J]. Geophysical & Geochemical Exploration, 2009,33(2):135-139.

Magsci     [本文引用: 1]

Hinkle M E, Ryder J L, Sutley S J, Botinelly T .

Production of sulfur gases and carbon dioxide by synthetic weathering of crushed drill cores from the Santa Cruz porphyry copper deposit near Casa Grande, Pinal County, Arizona

[J]. Journal of Geochemical Exploration, 1990,38:43-67.

DOI:10.1016/0375-6742(90)90092-O      URL     [本文引用: 1]

Samples of ground drill cores from the southern part of the Santa Cruz porphyry copper deposit, Casa Grande, Arizona, were oxidized in simulated weathering experiments. The samples were also separated into various mineral fractions and analyzed for contents of metals and sulfide minerals. The principal sulfide mineral present was pyrite. Gases produced in the weathering experiments were measured by gas chromatography. Carbon dioxide, oxygen, carbonyl sulfide, sulfur dioxide and carbon disulfide were found in the gases; no hydrogen sulfide, organic sulfides, or mercaptans were detected. Oxygen concentration was very important for production of the volatiles measured; in general, oxygen concentration was more important to gas production than were metallic element content, sulfide mineral content, or mineral fraction (oxide or sulfide) of the sample. The various volatile species also appeared to be interactive; some of the volatiles measured may have been formed through gas reactions.

Butt, C R M , Gole M J. Helium in soil and over burden gas as an exploration pathfinder:An assessment [J].Journal of Geochemical Exploration,1985(

3)

24:141-173.

[本文引用: 1]

Hale M .

Gas geochemistry and deeply buried mineral deposits

[J]. Geochemistry: Exploration, Environment, Analysis, 2010,10(2):261-67.

DOI:10.1144/1467-7873/09-236      URL     [本文引用: 1]

McCarthy J H .

Mercury vapor and other volatile components in the air as guides to ore deposits

[J]. Journal of Geochemical Exploration, 1972,1(3):143-162.

DOI:10.1016/0375-6742(72)90012-X      URL     [本文引用: 1]

Several gaseous elements and compounds have been found to occur in anomalous concentrations in soil gas or air over mineral deposits. These gases or vapors include mercury, sulfur dioxide, carbon dioxide, hydrogen sulfide, fluorine, chlorine, bromine, and iodine. Ore deposits buried by as much as several hundred meters of barren or postmineral overburden have been detected, and buried faults, fractures, and zones of tectonic disturbance have been mapped by use of gas anomalies. Some gases are measured directly with sensitive instrumental methods while others are concentrated and analyzed by traditional analytical methods. Temperature, barometric pressure, and other meteorological parameters influence gas anomalies, although their effects are incompletely understood. Gas anomalies extend the usefulness of geochemical exploration in the search for buried ore deposits.

韩伟, 刘华忠, 王成文 , .

沙泉子铜镍矿壤中汞气和二氧化硫气体地球化学测量

[J]. 物探与化探, 2016,40(6):1077-1081.

DOI:10.11720/wtyht.2016.6.04      URL     [本文引用: 1]

为研究壤中汞气与二氧化硫气体地球化学测量在干旱戈壁荒漠区隐伏铜镍矿的找矿效果,设计了对沙泉子隐伏铜镍矿壤中汞气与二氧化硫气体的地球化学剖面测量试验,取得了较好的结果。壤中汞气与二氧化硫气体在隐伏矿化体上方出现不同程度的异常特征,说明这两种方法在试验区对寻找隐伏铜镍矿有一定效果,为在干旱戈壁荒漠区找矿提供了新思路。

Han W, Liu H Z, Wang C W , et al.

A preliminary test of SO2 and Hg in soil gas geochemical exploration in the Shaquanzi Cu-Ni deposit

[J]. Geophysical & Geochemical Exploration, 2016,40(6):1077-1081.

[本文引用: 1]

尹冰川 .

综合气体地球化学测量

[J]. 物探与化探, 1997,21(4):241-246.

URL     Magsci     [本文引用: 1]

<p>本文在综合大量资料的基础上,总结了气体地球化学的发展历史,对有关综合气体测量在发展过程中出现的一些术语,阐述了一点浅见,介绍了综合气体测量的采样方法、理论依据,提出了综合气体测量的发展方向。</p>

Yin B C .

Integrated geochemical gas survey

[J]. Geophysical & Geochemical Exploration, 1997,21(4):241-246.

Magsci     [本文引用: 1]

Lombardi S, Voltattorni N .

Rn, He and CO2 soil gas geochemistry for the study of active and inactive faults

[J]. Applied Geochemistry, 2010,25(4):1206-1220.

DOI:10.1016/j.apgeochem.2010.05.006      URL     [本文引用: 1]

Two Italian areas, characterized by different seismological histories, were investigated to enhance the basic knowledge of gas migration mechanisms during earthquakes. Sharp variations occur in the movement and concentration of some gaseous species due to the evolution of the local stress regime. The first area (Colpasquale) is located in the central Italian region of Marche and provided a good location to study gas migration in a seismically active region. The area was devastated by a sequence of shallow earthquakes over a 302month-long period (September–December, 1997). The occurrence of this catastrophic event, as well as the long duration of the “seismic sequence”, presented a unique opportunity to study gas migration in a zone undergoing active displacement. Soil gas surveys were performed 1 day, 1 week, 1 year and 2 years after the main shock (Ms 5.6) in the Colpasquale area. In particular, results highlight a change in the Rn distribution during the three monitoring years indicating a variation of gas migration that may be linked to the evolution of the stress regime.The second study area is located in the Campidano Graben (southern part of Sardinia Island). This area is characterized by seismic quiescence, displaying an almost complete lack of historical earthquakes and instrumentally recorded seismicity. The consistently low values observed for all analyzed gases suggest that the studied area is likely characterized by sealed, non-active faults that prevent significant gas migration. The comparison of data from both studied areas indicate that soil gas geochemistry is useful to locate tectonic discontinuities even when they intersect non-cohesive clastic rocks near the surface and thus are not visible (i.e., “blind faults”).

Fursov V Z .

Mercury vapor surveys: technique and results

[J]. Journal of Geochemical Exploration, 1990,38(5), 145-155.

DOI:10.1016/0375-6742(90)90098-U      URL     [本文引用: 1]

Mercury vapor haloes in soil air have been identified over more than 70 exposed, blind, buried and buried-and-blind deposits seated from 1 to 640 m deep. The usefulness of the mercury vapor technique has been proven by discovery of new ore bodies at depths from 2 to 35 m. There is a close relation between primary (rock) and secondary (vapor) Hg haloes. One kind of halo gives birth to another and vice versa. The depth resolution of the method is due to vertical dimensions or primary haloes. The anomalous gaseous component substantially exceeds the natural background of mercury vapor in soil air permitting mercury vapor haloes to be identified above deep-seated deposits. The anomalous occluded component in overburden has lower concentrations of syngenetic mercury and, therefore, superimposed dispersion haloes of mercury are rarely identified above buried and buried-and-blind deposits when using whole-rock analysis. Deposits with no anomalous mercury source are not accompanied by occluded and vapor haloes.

You Y F, Li X J .

Research and application of soil-gas mercury surveys for locating deep uranium orebodies

[J]. Journal of Geochemical Exploration, 1990,38(2):133-143.

DOI:10.1016/0375-6742(90)90097-T      URL     [本文引用: 1]

This paper discusses the distribution of mercury in four kinds of uranium deposits and the form of the corresponding soil-gas mercury haloes. Uranium deposits can be divided into three levels according to their mercury contents. Carbonatite-type uranium deposits are often associated with high levels of mercury, which forms large, high-concentration and high-contrast soil-gas haloes in residual alluvium. Mercury concentration goes up with increasing sampling depths and has been used successfully to locate deep uranium orebodies around siliceous limestone-hosted uranium deposits.

申勇胜, 马小红, 张玉洁 , .

青海省化隆县拉水峡铜镍矿区地气汞气测量异常特征分析

[J]. 物探与化探, 2009,17(4):54-57.

DOI:10.3969/j.issn.1005-2518.2009.04.010      URL     [本文引用: 1]

拉水峡铜镍矿位于秦祁昆造山系西南缘日月山一化隆新元古代地块中部。赋矿地层为化隆岩群的一 套中高级变质岩系,岩性主要为黑云斜长片麻岩、角闪片岩。因矿区普遍被厚50—150m的古近系一新近系西宁群紫红色砂砾岩、粘土岩等岩层覆盖,采用常规 的矿产勘查方法很难发挥作用。近几年在该矿区通过1:5000地气汞气测量详查工作,共圈出地气汞气异常11处,初步认为Ⅰ号和Ⅷ号异常找矿意义最大。结 果表明利用地气汞气测量方法对寻找隐伏矿床有一定借鉴意义。

Shen Y S, Ma X H, Zhang Y J , et al.

Discussion on the anomaly characteristics of Lashuixia Cu-Ni deposit in Qinghai by geogas and mercury gas measurement

[J]. Geophysical & Geochemical Exploration, 2009,17(4):54-57.

[本文引用: 1]

李伟, 刘翠辉, 贺根文 , .

赣南银坑矿田土壤与汞气地球化学特征与成矿预测

[J]. 矿物岩石地球化学通报, 2016,35(6):1195-1202.

DOI:10.3969/j.issn.1007-2802.2016.06.010      URL     Magsci     [本文引用: 1]

银坑矿田位于南岭东段,是赣南最重要的Au-Ag找矿勘查区,区内最主要的矿床类型为破碎带蚀变岩型。为了对银坑矿田进行深部找矿,采用地质-土壤-汞气综合剖面测量的方法,对比研究了土壤元素和深穿透汞气的异常特征。结果显示,矿田土壤中,Au、Ag元素富集明显,Pb、Zn元素次之;不同地层所对应的土壤表现出不同的元素富集,如上施组地层区Au、Ag、Pb、Zn异常明显,隐爆角砾岩区Au元素较富集。土壤中汞气测量结果表明,破碎带、矿体都表现出明显的异常,矿体表现出高值异常,其峰背比均值达13.4,汞气最高值达5680 ng/m<sup>3</sup>。根据异常特征,并对比地质信息及已有勘探成果,综合圈定出破碎带蚀变岩型银(金)铅锌多金属矿找矿远景区3处,隐爆角砾岩型金矿找矿远景区1处。

Li W, Liu C H, He G W , et al.

Geochemical anomalies and metallogenic prediction in the Yinkeng ore field,Southern Jiangxi

[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2016,35(6):1195-1202.

Magsci     [本文引用: 1]

王国华, 蒋敬业, 董勇 .

利用壤中汞气测量在西天山高寒山区寻找隐伏矿的研究

[J]. 物探与化探, 2002,26(5):372-375.

DOI:10.3969/j.issn.1000-8918.2002.05.010      URL     Magsci     [本文引用: 1]

<p>通过在西天山高寒山区已知火山热液型铜矿点外围矿化剖面和冰雪水沉积、洪积厚层覆盖区激电异常上的壤中汞气测量试验,进而扩大到面积性测量,均取得了显著的地质效果。结果表明,壤中汞气测量在高寒条件下仍是一种快速、经济、有效的方法,具有推广价值。</p>

Wang G H, Jiang J Y, Dong Y .

The application of soil mercury vapor survey to the prospecting for concealed ore deposits in west Tianshan high and cold mountain areas

[J]. Geophysical & Geochemical Exploration, 2002,26(5):372-375.

Magsci     [本文引用: 1]

曾旭, 陈远荣, 林立保 , .

烃汞综合气体测量法在冲洪积覆盖区找矿的可行性探讨

[J]. 中国地质, 2016,43(2):607-616.

URL     [本文引用: 1]

长江中下游地区矿产丰富,不少矿区为冲洪积物所覆盖。基于烃汞气体挥发性、穿透性强以及迁移距离远的特点,文章利用烃汞综合气体测量法针对冲洪积物覆盖的特殊景观区开展了探索性的找矿试验研究。通过对长江中下游地区烃汞背景值和不同矿床类型烃汞异常场的研究,以及典型矿床烃汞测量找矿的有效性试验,结合烃类组分微观结构对比分析等方面的研究,发现长江中下游地区大部分矿床在成矿过程中伴随形成烃类气体原生异常场,同时,地表冲洪积物中含有与深部矿床同源的烃类异常信息,初步显示了烃汞测量法在冲洪积物覆盖区应用于找矿是可行的。

Zeng X, Chen Y R, Lin L B , et al.

The feasibility of applying integrated hydrocarbon and mercury method to ore prospecting in alluvial coverage area

[J]. Geology in China, 2016,43(2):607-616.

[本文引用: 1]

Lovell J S, Hale M, Webb J S .

Soil air carbon dioxide and oxygen measurements as a guide to concealed mineralization in semi-arid and arid regions

[J]. Journal of Geochemical Exploration, 1983,19(2):305-317.

DOI:10.1016/0375-6742(83)90023-7      URL     [本文引用: 1]

The differences between the CO 2 and O 2 concentrations in soil air and atmospheric air have been measured where sulfide mineralization occurs beneath transported exotic overburden in semi-arid and arid areas of the USA, South West Africa (Namibia) and Saudi Arabia. These mineralizations are reflected near surface by anomalous levels of CO 2 and O 2 in soil air, whereas in most cases heavy-metal anomalies are absent. The normal background variability of CO 2 and O 2 in soil air falls with increasing aridity, and anomaly definition improves with increasing aridity. Thus soil air CO 2 and O 2 data are potentially useful in exploring for concealed mineralization, especially in regions with an arid climate or conspicuous dry season.

Hinkle M E, Dilbert C A .

Gases and trace elements in soils at the North Silver Bell deposit, Pima County, Arizona

[J]. Journal of Geochemical Exploration, 1984,20(3):323-336.

DOI:10.1016/0375-6742(84)90074-8      URL     [本文引用: 1]

Soil samples were collected over the North Silver Bell porphyry copper deposit near Tucson, Arizona. Volatile elements and compounds in gases derived from the soils and metallic elements in the soils were analyzed in order: (1) to see which volatile constituents of the soils might be indicative of the ore body or the alteration zones; and (2) to distinguish the ore and alteration zones by comparison of trace elements in the soil. Plots of analytical data on trace elements in soils indicated a typical distribution pattern for metals around a porphyry copper deposit, with copper, molybdenum, and arsenic concentrations higher over the ore body, and zinc, lead, and silver concentrations higher over the alteration zones. Higher than average concentrations of helium, carbon disulfide, and sulfur dioxide adsorbed on soils were found over the ore body, whereas higher concentrations of carbon dioxide and carbonyl sulfide were found over the alteration zones.

刘庆余 .

CO2气体地球化学法在地质找矿中的应用

[J]. 地质地球化学, 1988,5(6):11-16.

URL     [本文引用: 1]

正 气体地球化学法是勘查地球化学的一个重要分支。近十多年来,该法发展迅速、成果丰硕,实践证明它是地质找矿中的一种新技术。气体地球化学勘查是以测量与矿 床在成因上及空间上有联系的某些气体元素或化合物的异常进行找矿。有些元素和化合物在地壳中呈气态迁移是很普遍的现象,在各种地质成矿过

Liu Q Y .

The application of CO2 gas measurement method for mineral exploration

[J]. Geology and Geochemistry, 1988,5(6):11-16.

[本文引用: 1]

高乾兰 .

根据壤中二氧化碳和氧气探测隐伏矿体

[J]. 桂林工学院学报, 1986,4:1-4.

URL     [本文引用: 1]

正 使用土壤气体地球化学勘探法有时能发现一些深部矿体。但是,在某些情况下,这种方法并不成功,如在矿体埋藏很深或者取样线横切湿地或者矿体和主岩之间硫化物含量的对比度偏低时,都会导致失败。本文根据在美国和两德几个野外现场的调查研究,讨论了这些失败的原因和进一步研究时应注意的问题。

Gao Q L .

Detecting concealed orebodies based on carbon dioxide and oxygen in soil air

[J]. Journal of Guilin University of Technology, 1986,4:1-4.

[本文引用: 1]

Polito P A, Clarke J D A, Bone1 Y ,et al.

A CO2-O2-light hydrocarbon-soil-gas anomaly above the Junction orogenic gold deposit: a potential, alternative exploration technique

[J]. Geochemistry: Exploration, Environment, Analysis, 2002,2(2):333-344.

DOI:10.1144/1467-787302-035      URL     [本文引用: 1]

张洁, 程志中, 伦知颍 , .

土壤中CO2、SO2和H2S气体测量:一种适用于覆盖区找矿的化探方法

[J]. 地质科技情报, 2016,35(6):12-17.

[本文引用: 2]

Zhang J, Cheng Z Z, Lun Z Y , et al.

Soil air Carbon Dioxide, Sulphur Dioxide and Hydrogen Sulfide Measurements as a Guide to concealed mineralization

[J]. Geological Science and Technology Information, 2016,35(6):12-17.

[本文引用: 2]

刘智振, 谷新建, 黄友金 , .

黄金洞金矿深部找矿方向研究

[J]. 采矿技术, 2016,16(5):79-81.

URL     [本文引用: 1]

黄金洞金矿因长期采掘,面临资源接替问题.根据矿区地质概况、成矿机制、成矿 规律、成矿模式等内容,对黄金洞金矿深部成矿规律进行了分析研究,得出本矿区金矿的 成矿规律属于区域变质热液型,并对黄金洞金矿的找矿进行了预测,在矿区内确定了 3 个 级别共11 个找矿靶区,为黄金洞金矿的找矿问题指明了方向,为解决矿山资源接替带来 了新的希望.

Liu Z Z, Gu X J, Huang Y J , et al.

Research on the direction of deep prospecting in Huangjindong gold deposit

[J]. Mining Technology, 2016,16(5):79-81.

[本文引用: 1]

黄强太, 夏斌, 蔡周荣 , .

湖南省黄金洞金矿田构造与成矿规律探讨

[J]. 黄金, 2010,31(2):9-13.

DOI:10.3969/j.issn.1001-1277.2010.02.003      URL     [本文引用: 1]

在现代新构造学和成矿地质理论的指导下,以前人工作的研究为基础,重点对区内赋矿地层、矿脉特征、成矿条件及构造成矿方面做了深入的分析。提出了本区冷家溪群是矿源层,并且成矿物质不仅仅来自于围岩,还有一部分来自于地壳深部岩浆侵入;控制金矿田的是近EW向的3条区域韧性推覆剪切带,控制金矿体的是一些低次序在剪切带基础上的扩容断裂构造;金矿成矿与剪切变形存在密切的时空关系,长时间的强烈的剪切变形,不仅使矿体和围岩强烈变形,而且促使了成矿元素的高度富集;黄金洞金矿田矿脉主要分布在韧性剪切带上,因此今后主要工作在于寻找东西向的韧性剪切带。

Huang Q T, Xia B, Cai Z R , et al.

Study on tectonic and metallogenic law in Huangjindong gold ore field, Hunan province

[J]. Gold, 2010,31(2):9-13.

[本文引用: 1]

夏浩东, 息朝庄, 邓会娟 , .

湘东北黄金洞金矿床成因: 硫、铅同位素和流体包裹体新证据

[J]. 黄金, 2017,38(10):19-24.

DOI:10.11792/hj20171004      URL     [本文引用: 1]

黄金洞金矿床位于湘东北,赋存于中元古界冷家溪群浅变质碎屑岩中,并具有资源储量大、金品位高、伴生元素丰富等典型特征.在前人研究的基础上,对黄金洞金矿床的硫、铅同位素、流体包裹体特征和成矿时代展开了系统研究.研究结果表明:成矿物质具有地层和深部岩浆的混合来源特征;成矿流体属中低温、中低盐度的K-Na-Ca2-Mg-F-Cl-SO4体系,来源于深部岩浆和大气降水的混合;矿床成矿具有2个主成矿期,分别为加里东期和燕山期.

Xia H D, Xi C Z, Deng H J , et al.

Genesis of Huangjindong gold deposit: new evidence for sulfur, lead isotopes and fluid inclusions

[J]. Gold, 2017,38(10):19-24.

[本文引用: 1]

息朝庄, 杨涛, 夏浩东 , .

湘东北黄金洞金矿床微量元素、稀土元素特征及其地质意义

[J]. 黄金, 2018,39(2):17-21.

DOI:10.11792/hj20180205      URL     [本文引用: 1]

黄金洞金矿床是位于江南古陆造山带中段的大型金矿床,具有金矿资源储量大、品位高、共伴生元素多等特点。矿石微量元素和稀土元素分析结果显示:微量元素具有Li、Co、Cu、Rb、Cs、Tl、Th富集,而Cr、Ni、Sr、Cd、Ta、U、Zr亏损,大离子亲石元素Rb富集,Sr亏损,高场强元素Th富集,Nb亏损;稀土元素具有轻稀土富集,重稀土亏损,球粒陨石标准化配分曲线均为右倾型式的特征。由此表明,黄金洞金矿床成矿物质具有多来源性,应为壳幔混合来源。

Xi C Z, Yang T, Xia H D , et al.

Characteristics of trace elements and REE in Huangjindong gold deposit in northeastern Hunan and their geological significance

[J]. Gold, 2018,39(2):17-21.

[本文引用: 1]

沈克富 .

平江黄金洞金矿田成矿特征及找矿前景

[J]. 湖南地质, 2000,19(4):237-240.

URL     [本文引用: 1]

黄金洞金矿田的成矿特主要来源于含矿地层,矿体赋存于近东西向的断裂中,并具多阶段成矿及主要成矿阶段叠加富集之特点。根据该矿田金矿的成矿特征及成矿规律,本文指出在其北部地域具有良好的找金前景。

Shen K F .

The characteristics of gold mineralization and the prospecting vista in Huangjindong gold deposit in Pingjiang County, Hunan

[J]. Hunan Geology, 2000,19(4):237-240.

[本文引用: 1]

刘亮明, 彭省临, 吴延之 .

湘东北地区脉型金矿床成矿构造特征及构造成矿机制

[J]. 大地构造与成矿学, 1997,3(21):197-204.

URL     [本文引用: 2]

湘东北是一个重要的脉型金矿成矿区,区内脉金矿都产于冷家溪群变质岩系虽,其成矿构造主要是与剪相相关的各级断裂构造,控制金矿田的主要是三条近东西向的区域韧性剪切带;控制矿体定位的含矿构造形态复杂多样,可总结出六种主要的基本含矿构造样式,这些含矿构造都剪切扩容构造。

Liu L M, Peng X L, Wu Y Z .

Features of metallogenic-tectonic sand mechanism of tectonic-metallization for vein-type gold deposits in the north-eastern Hunan, China

[J]. Geotectonica et Metallogenia, 1997,3(21):197-204.

[本文引用: 2]

/

京ICP备05055290号-3
版权所有 © 2021《物探与化探》编辑部
通讯地址:北京市学院路29号航遥中心 邮编:100083
电话:010-62060192;62060193 E-mail:whtbjb@sina.com