|
|
|
| Application of the surface-to-borehole direct current method for subgrade investigations in karst terrain |
YU Xiao-Qing1( ), WEN Jin-Hao2( ) |
1. Jiangxi Ganyue Expressway Co. Ltd., Nanchang 330006, China 2. School of Geophysics and Space Exploration, East China University of Technology, Nanchang 330013, China |
|
|
|
|
Abstract In karst subgrade exploration engineering, the application of the surface multi-electrode resistivity method faces challenges: on the one hand, the limitation of electrode array length constrains the effective exploration depth of this method; on the other hand, as the exploration depth increases, the available current distribution information from deeper layers decreases, resulting in a gradual weakening of the method's resolution capability, particularly in accurately predicting small-scale karst development areas at depth. To address this issue, the article proposes a solution: introducing wellbore electrodes on the basis of traditional surface multi-electrode resistivity observations to achieve “surface-to-wellbore” resistivity data acquisition. This strategy aims to increase and obtain deep current distribution information by adding wellbore electrodes, thereby enhancing the local effective exploration depth and improving the resolution of inversion results. To evaluate the effectiveness of the “surface-to-wellbore” resistivity observation method in obtaining deep karst information, the article first conducts an in-depth analysis using numerical simulation methods. Subsequently, the practical application value and effectiveness of this method are further demonstrated through inversion results based on measured data from karst subgrades. The research results show that the multi-electrode resistivity measurement technique with wellbore electrodes can significantly improve the resolution for identifying deep anomalies, providing an effective path to overcome the limitations of multi-electrode resistivity methods in deep karst exploration.
|
|
Received: 10 October 2024
Published: 30 December 2025
|
|
|
|
Corresponding Authors:
WEN Jin-Hao
E-mail: 136804603@qq.com;2681531617@qq.com
|
|
|
|
|
Schematic diagram of multi-electrode resistivity method with well observations
|
|
Simple theoretical model
|
|
Apparent resistivity contour map
|
|
Comparison of inversion results
|
|
Complex theoretical model
|
|
Comparison of inversion results
|
|
Schematic diagram of survey line layout 1
|
|
Measured inversion results
|
|
Schematic diagram of survey line layout 2
|
|
Measured inversion results
|
| [1] |
吴亚楠. 高密度电阻率法在莱芜市泉河地区岩溶地质勘查中的应用[J]. 中国岩溶, 2018, 37(4):617-623.
|
| [1] |
Wu Y N. Application of the high-density electrical resistivity method to karst geological exploration in Quanhe,Laiwu City[J]. Carsologica Sinica, 2018, 37(4):617-623.
|
| [2] |
刘存林, 吴胜仓. 综合勘察方法在某公路工程岩溶勘察中的应用[J]. 公路, 2021, 66(5):76-79.
|
| [2] |
Liu C L, Wu S C. Application of comprehensive survey method in karst survey of a highway project[J]. Highway, 2021, 66(5):76-79.
|
| [3] |
戴建玲, 雷明堂, 蒋小珍, 等. 长江经济带岩溶塌陷分布、成因及其对工程建设的影响[J]. 中国地质, 2024, 51(1):184-202.
|
| [3] |
Dai J L, Lei M T, Jiang X Z, et al. Distribution and causes of Karst collapse in Yangtze River Economic Belt and its influence on engineering construction[J]. Geology in China, 2024, 51(1):184-202.
|
| [4] |
夏波, 周佩华, 李文滔, 等. 高密度电阻率法不同装置在岩溶勘探中的应用效果研究[J]. 四川地质学报, 2022, 42(3):514-519.
|
| [4] |
Xia B, Zhou P H, Li W T, et al. Study on application effect of different devices of high density resistivity method in Karst exploration[J]. Acta Geologica Sichuan, 2022, 42(3):514-519.
|
| [5] |
夏时斌, 廖国忠, 邓国仕, 等. 高密度电法和音频大地电磁测深法在西南岩溶地区地下水勘探中的应用[J]. 物探与化探, 2024, 48(3):651-659.
|
| [5] |
Xia S B, Liao G Z, Deng G S, et al. Application of high-density electrical resistivity tomography and audio magnetotellurics for groundwater exploration in the Karst area in southwestern China[J]. Geophysical and Geochemical Exploration, 2024, 48(3):651-659.
|
| [6] |
周建兵, 罗锐恒, 贺昌坤, 等. 文山小河尾水库岩溶含水渗漏通道的地球物理新证据[J]. 物探与化探, 2023, 47(3):707-717.
|
| [6] |
Zhou J B, Luo R H, He C K, et al. New geophysical evidence for Karst water-bearing seepage pathways in the Xiaohewei reservoir,Wenshan City[J]. Geophysical and Geochemical Exploration, 2023, 47(3):707-717.
|
| [7] |
唐宇豪, 魏栋华, 索朗, 等. 地震映像法和地质雷达法在铁路隧底岩溶探测中的应用[J]. 工程地球物理学报, 2021, 18(5):665-670.
|
| [7] |
Tang Y H, Wei D H, Suo L, et al. Application of seismic imaging method and ground penetrating radar method in Karst detection at the bottom of railroad tunnels[J]. Chinese Journal of Engineering Geophysics, 2021, 18(5):665-670.
|
| [8] |
刘东坤, 魏昶帆, 吴勇, 等. 地质雷达法在桩底岩溶探测中的频谱差异分析[J]. 地下空间与工程学报, 2020, 16(S2):971-975.
|
| [8] |
Liu D K, Wei C F, Wu Y, et al. Analysis on the spectrum difference of electromagnetic method for the bottom of the pile in Karst detection project[J]. Chinese Journal of Underground Space and Engineering, 2020, 16(S2):971-975.
|
| [9] |
杨磊, 张志勇, 周峰, 等. 探地雷达在路基勘查中的应用[J]. 公路, 2015, 60(5):17-21.
|
| [9] |
Yang L, Zhang Z Y, Zhou F, et al. Application of GPR in the exploration of road base[J]. Highway, 2015, 60(5):17-21.
|
| [10] |
王薇, 邓小虎, 金聪, 等. 电磁波CT 揭露重大工程岩溶发育特征——以某地铁岩溶勘察为例[J]. 科学技术与工程, 2020, 20(34):13977-13982.
|
| [10] |
Wang W, Deng X H, Jin C, et al. The characteristics of Karst development in major projects revealed by electromagnetic wave computed tomography:A case for Karst investigation of a metro[J]. Science Technology and Engineering, 2020, 20(34):13977-13982.
|
| [11] |
高阳, 熊华山, 彭明涛, 等. 渝东南岩溶储水构造高密度电阻率法异常特征[J]. 物探与化探, 2016, 40(6):1108-1115.
|
| [11] |
Gao Y, Xiong H S, Peng M T, et al. High density electrical prospecting anomaly analysis of water-bearing structure in Karst area of southeast Chongqing[J]. Geophysical and Geochemical Exploration, 2016, 40(6):1108-1115.
|
| [12] |
郑志龙, 陈洋, 王丽君, 等. 高密度电法在某高速公路岩溶隧道探测中的应用[J]. 地下空间与工程学报, 2021, 17(S2):912-917,924.
|
| [12] |
Zheng Z L, Chen Y, Wang L J, et al. Application of high density electrical method in Karst tunnel detection of a highway[J]. Chinese Journal of Underground Space and Engineering, 2021, 17(S2):912-917,924.
|
| [13] |
孙忠辉. 高密度电法在复杂岩溶区公路勘察中的应用效果研究[D]. 成都: 西南交通大学, 2014.
|
| [13] |
Sun Z H. Study on the application effect of high-density electrical method in highway survey in complex Karst area[D]. Chengdu: Southwest Jiaotong University, 2014.
|
| [14] |
肖宏跃, 雷行健, 雷宛. 环境物探技术在岩溶勘察中的应用及其效果[J]. 灾害学, 2007, 22(3):58-62.
|
| [14] |
Xiao H Y, Lei X J, Lei W. The application of engineering exploring technology in lava exploration and its effects[J]. Journal of Catastrophology, 2007, 22(3):58-62.
|
| [15] |
高卫富, 贾李博, 胡安顺, 等. 直流电法多装置探测在岩溶探查中的研究及应用[J]. 地球物理学进展, 2021, 36(6):2687-2692.
|
| [15] |
Gao W F, Jia L B, Hu A S, et al. Research and application of DC multi array detection in Karst exploration[J]. Progress in Geophysics, 2021, 36(6):2687-2692.
|
| [16] |
余鹏洲, 张志勇, 黄临平, 等. 带井观测高密度电阻率法2.5维非结构化网格反演[J]. 地球物理学进展, 2019, 34(4):1687-1693.
|
| [16] |
Yu P Z, Zhang Z Y, Huang L P, et al. 2.5D inversion of borehole and surface multi-electrode DC data using unstructured mesh[J]. Progress in Geophysics, 2019, 34(4):1687-1693.
|
| [17] |
张志勇, 周峰, 李泽林. 基于最小梯度支撑的2.5D 井地电位法正则化聚焦反演[J]. 中国有色金属学报, 2015, 25(11):3182-3189.
|
| [17] |
Zhang Z Y, Zhou F, Li Z L. 2.5D focusing inversion for boreholesurface electrical data based on minimum gradient support function[J]. The Chinese Journal of Nonferrous Metals, 2015, 25(11):3182-3189.
|
| [18] |
徐世浙. 地球物理中的有限单元法[M]. 北京: 科学出版社, 1994.
|
| [18] |
Xu S Z. The finite element method in geophysics[M]. Beijing: Science Press, 1994.
|
| [19] |
Zhdanov M S. Geophysical inverse theory and regularization problems[M]. Amsterdam: Elsevier Science, 2002.
|
| [20] |
Lelièvre P G, Farquharson C G. Gradient and smoothness regularization operators for geophysical inversion on unstructured meshes[J]. Geophysical Journal International, 2013, 195(1):330-341.
|
| [21] |
杨磊, 张志勇, 李曼, 等. 直流电阻率法与大地电磁法的二维联合反演[J]. 地球物理学进展, 2016, 31(2):851-855.
|
| [21] |
Yang L, Zhang Z Y, Li M, et al. 2D joint inversion of direct current resistivity and magnetotelluric sounding data[J]. Progress in Geophysics, 2016, 31(2):851-855.
|
|
|
|