|
|
|
| Seismic attribute-geomechanics integrated fracture modeling technology and fracture effectiveness analysis: A case study of the Jurassic shales in the Fuling area, Sichuan Basin |
ZHOU Jiang-Hui1( ), LIU Xiao-Jing1, XIONG Chen-Hao1, HU Xin1, WU Yi-Ming2 |
1. Exploration Company, SINOPEC, Chengdu 610041, China 2. No. 2 Gas Production Plant, Southwest Petroleum Bureau, SINOPEC, Langzhong 637400, China |
|
|
|
|
Abstract The distribution of fractures influences the trajectory design of shale gas horizontal wells and the stimulation effectiveness of hydraulic fractures. Faults and joints serve as two types of fractures. Accordingly, this study proposed the seismic attribute-geomechanics integrated fracture modeling technology. Specifically, fault modeling is conducted using seismic attributes, and joint prediction is performed using geomechanical structural restoration and Mohr-Coulomb theory. The obtained results of faults and joints are then integrated into the discrete fracture network (DFN) modeling for spatial characterization of natural tectonic fractures. The proposed technology was applied to the exploration of Jurassic lacustrine shales in the Fuling area within the Sichuan Basin. Its fracture modeling results were consistent with the imaging log interpretation results, confirming the development zones and spatial distribution patterns of fractures. Moreover, the stimulation effectiveness of fracturing was evaluated by comparing the fracture modeling results of typical wells with the actual fracturing performance. The evaluation results indicate that tensile fractures that are vertical or oblique to well trajectories are favorable for fracturing. Overall, the results of this study hold positive implications for predicting fracture development zones and guiding horizontal well trajectory design in the exploration stage, serving as a reference for subsequent exploration deployment.
|
|
Received: 06 March 2025
Published: 30 December 2025
|
|
|
|
|
|
|
Forward modeling results with different fault displacements and folding degrees
|
|
Principle diagram for predicting the possibility of rock fracture
|
8]) ">
|
Principle diagram of UVT coordinate conversion (modifird according to reference [8])
|
|
Forward model with different degrees of folding and geomechanical fracture modeling result
|
|
Fracture modeling result of the the oretical model
|
|
Analysis approach of fracture based on seismic attributes and geomechanics fracture modeling
|
|
Seismic attributes and imaging logging maps of Lianggaoshan Formation and Dongyue Temple section
|
|
Geomechanical fractures in the Lianggaoshan Formation and Dongyue Temple section
|
|
Comparison between fracture modeling results of Lianggaoshan Formation in Fuxing Region and FMI imaging logging of typical wells
|
|
Typical well fracture modeling and microseismic comparison diagram
|
|
Bar chart of stages and microseismic events
|
|
Typical horizontal shale gas well fracture modeling and microseismic superposition diagram of fracturing communication fault type
|
|
Typical well fracture modeling and microseismic superposition diagram without faults around the well
|
| [1] |
关宝文, 郭建明, 杨燕, 等. 油气储层裂缝预测方法及发展趋势[J]. 特种油气藏, 2014, 21(1):12-17,151.
|
| [1] |
Guan B W, Guo J M, Yang Y, et al. Methods of fracture prediction in oil & gas reservoirs and their development trend[J]. Special Oil & Gas Reservoirs, 2014, 21(1):12-17,151.
|
| [2] |
赵锐, 赵腾, 李慧莉, 等. 塔里木盆地顺北油气田断控缝洞型储层特征与主控因素[J]. 特种油气藏, 2019, 26(5):8-13.
|
| [2] |
Zhao R, Zhao T, Li H L, et al. Fault-controlled fracture-cavity reservoir characterization and main-controlling factors in the Shunbei hydrocarbon field of Tarim basin[J]. Special Oil & Gas Reservoirs, 2019, 26(5):8-13.
|
| [3] |
刘军, 黄超, 杨林, 等. 顺北地区碳酸盐岩断控缝洞体油气产能定量化估算技术[J]. 物探与化探, 2023, 47(3):747-756.
|
| [3] |
Liu J, Huang C, Yang L, et al. Quantitative estimation technology for oil and gas productivity of fault-controlled fractured-vuggy bodies in Carbonate rocks in Shunbei area[J]. Geophysical and Geochemical Exploration, 2023, 47(3):747-756.
|
| [4] |
黄仁春, 刘若冰, 刘明, 等. 川东北通江—马路背地区须家河组断缝体储层特征及成因[J]. 石油与天然气地质, 2021, 42(4):873-883.
|
| [4] |
Huang R C, Liu R B, Liu M, et al. Characteristics and genesis of fault-fracture reservoirs in the Xujiahe Formation,Tongjiang-Malubei area,northeastern Sichuan Basin[J]. Oil & Gas Geology, 2021, 42(4):873-883.
|
| [5] |
黄彦庆. 川东北元坝地区致密砂岩多产状裂缝刻画[J]. 物探与化探, 2023, 47(5):1189-1197.
|
| [5] |
Huang Y Q. Characterization of multi-attitude fractures in tight sandstones in the Yuanba area,northeastern Sichuan Basin[J]. Geophysical and Geochemical Exploration, 2023, 47(5):1189-1197.
|
| [6] |
魏志红, 刘若冰, 魏祥峰, 等. 四川盆地复兴地区陆相页岩油气勘探评价与认识[J]. 中国石油勘探, 2022, 27(1):111-119.
|
| [6] |
Wei Z H, Liu R B, Wei X F, et al. Evaluation and understanding of continental shale oil and gas exploration in Fuxing area,Sichuan Basin[J]. China Petroleum Exploration, 2022, 27(1):111-119.
|
| [7] |
葛勋, 郭彤楼, 黎茂稳, 等. 永川地区深层页岩气储层不同尺度裂缝精细建模[J]. 大庆石油地质与开发, 2023, 42(6):1-8.
|
| [7] |
Ge X, Guo T L, Li M W, et al. Fine modeling of fractures with different scales in deep shale gas reservoirs in Yongchuan area[J]. Petroleum Geology & Oilfield Development in Daqing, 2023, 42(6):1-8.
|
| [8] |
刘剑锋, 王鹏, 毛庆辉, 等. 基于不同尺度的储层裂缝建模方法对比[J]. 地球物理学进展, 2023, 38(5):2071-2079.
|
| [8] |
Liu J F, Wang P, Mao Q H, et al. Comparison of reservoir fracture modeling methods based on different scales[J]. Progress in Geophysics, 2023, 38(5):2071-2079.
|
| [9] |
管树巍, Andreas Plesch, 李本亮, 等. 基于地层力学结构的三维构造恢复及其地质意义[J]. 地学前缘, 2010, 17(4):140-150.
|
| [9] |
Guan S W, Plesch A, Li B L, et al. Volumetric structural restorations based on mechanical constraints and its geological significance[J]. Earth Science Frontiers, 2010, 17(4):140-150.
|
| [10] |
高晨阳, 赵福海, 高莲凤, 等. 基于构造应变分析的裂缝预测方法及其应用[J]. 地质力学学报, 2023, 29(1):21-33.
|
| [10] |
Gao C Y, Zhao F H, Gao L F, et al. The methods of fracture prediction based on structural strain analysis and its application[J]. Journal of Geomechanics, 2023, 29(1):21-33.
|
| [11] |
梁志强, 李弘. 不同方位各向异性反演技术对比和总结[J]. 物探与化探, 2024, 48(2):443-450.
|
| [11] |
Liang Z Q, Li H. Comparison and summary of different azimuthal anisotropic inversion techniques[J]. Geophysical and Geochemical Exploration, 2024, 48(2):443-450.
|
| [12] |
王洪求, 杨午阳, 谢春辉, 等. 不同地震属性的方位各向异性分析及裂缝预测[J]. 石油地球物理勘探, 2014, 49(5):925-931,820-821.
|
| [12] |
Wang H Q, Yang W Y, Xie C H, et al. Azimuthal anisotropy analysis of different seismic attributes and fracture prediction[J]. Oil Geophysical Prospecting, 2014, 49(5):925-931,820-821.
|
| [13] |
陈杰, 李琼, 范欣然, 等. 利用分频相干技术检测页岩裂缝发育带[J]. 成都理工大学学报:自然科学版, 2017, 44(3):356-361.
|
| [13] |
Chen J, Li Q, Fan X R, et al. Detection of fracture development zone in shale by using discrete frequency coherence cubes[J]. Journal of Chengdu University of Technology:Science & Technology Edition, 2017, 44(3):356-361.
|
| [14] |
李培培, 赵汝敏, 杨松岭, 等. 构造曲率与振幅曲率在地震资料解释中的应用[J]. 物探与化探, 2013, 37(5):916-920.
|
| [14] |
Li P P, Zhao R M, Yang S L, et al. The application of structural curvature and amplitude curvature attribute to seismic interpretation[J]. Geophysical and Geochemical Exploration, 2013, 37(5):916-920.
|
| [15] |
谢清惠, 蒋立伟, 赵春段, 等. 提高蚂蚁追踪裂缝预测精度的应用研究[J]. 物探与化探, 2021, 45(5):1295-1302.
|
| [15] |
Xie Q H, Jiang L W, Zhao C D, et al. Application study of improving the precision of the ant-tracking-based fracture prediction technique[J]. Geophysical and Geochemical Exploration, 2021, 45(5):1295-1302.
|
| [16] |
张珈畅, 李涛, 梁宏刚, 等. 塔里木盆地二八台地区走滑断裂体系研究[J]. 物探与化探, 2024, 48(6):1588-1598.
|
| [16] |
Zhang J C, Li T, Liang H G, et al. Study on strike-slip fault system in Erbatai region,Tarim Basin[J]. Geophysical and Geochemical Exploration, 2024, 48(6):1588-1598.
|
| [17] |
王永和. 压裂过程中能否形成剪切裂缝探讨[J]. 化学工程与装备, 2020(7):98-99.
|
| [17] |
Wang Y H. Discussion on whether shear fractures can be formed during fracturing[J]. Chemical Engineering & Equipment, 2020(7):98-99.
|
| [18] |
李菊红. 矿产勘查中高精度构造和地层建模新技术[C]// 合肥: 首届全国矿产勘查大会, 2021.
|
| [18] |
Li J H. New high-precision structural and stratigraphic modeling technologies in mineral exploration[C]// Hefei: The First National Mineral Exploration Conference Proceedings, 2021.
|
| [19] |
陈更生, 谢清惠, 吴建发, 等. 地震多属性技术组合在泸州页岩气区块构造解释中的综合应用[J]. 物探与化探, 2022, 46(6):1349-1358.
|
| [19] |
Chen G S, Xie Q H, Wu J F, et al. Comprehensive application of the seismic multi-attribute technique combination in the tectonic interpretation of the Luzhou shale gas block[J]. Geophysical and Geochemical Exploration, 2022, 46(6):1349-1358.
|
| [20] |
孙炜, 李玉凤, 付建伟, 等. 测井及地震裂缝识别研究进展[J]. 地球物理学进展, 2014, 29(3):1231-1242.
|
| [20] |
Sun W, Li Y F, Fu J W, et al. Review of fracture identification with well logs and seismic data[J]. Progress in Geophysics, 2014, 29(3):1231-1242.
|
| [21] |
李秋辰, 陈冬, 许文豪, 等. 基于微地震连续裂缝网络模型的SRV研究[J]. 物探与化探, 2023, 47(4):1048-1055.
|
| [21] |
Li Q C, Chen D, Xu W H, et al. Study on SRV based on microseismic continuous fracture network model[J]. Geophysical and Geochemical Exploration, 2023, 47(4):1048-1055.
|
| [22] |
任岚, 于志豪, 赵金洲, 等. 深层页岩气断层属性对压裂缝网的影响[J]. 特种油气藏, 2023, 30(2):95-100.
|
| [22] |
Ren L, Yu Z H, Zhao J Z, et al. Influence of deep shale gas fault attributes on hydraulic fracture network[J]. Special Oil & Gas Reservoirs, 2023, 30(2):95-100.
|
| [23] |
王团, 赵海波, 杨志会, 等. 页岩储层天然裂缝对水力压裂改造效果的影响——以松辽盆地古龙凹陷青山口组页岩为例[J]. 石油地球物理勘探, 2025, 60(1):213-224.
|
| [23] |
Wang T, Zhao H B, Yang Z H, et al. Influence of natural fractures on hydraulic fracturing effect of shale reservoir:A case study of Qingshankou Formation shale in Gulong Sag of Songliao Basin[J]. Oil Geophysical Prospecting, 2025, 60(1):213-224.
|
| [1] |
YANG Xiao-Dong, ZHANG Jian-Qiang, GENG Li-Qiang, ZHANG Xue-Qi, CHENG Hui-Hui, KANG Ran. Performance and analysis of seismic recognition in coal mine underground roadways[J]. Geophysical and Geochemical Exploration, 2025, 49(5): 1133-1140. |
| [2] |
SHI Quan-Dang, KONG Ling-Ye, WU Chao, DING Yan-Xue, LIU Ze-Min, YU Xue, WANG Jiang. Application of wave impedance inversion technology based on wavelet edge analysis and combined well-seismic modeling in reservoir prediction of Luliang uplift zone[J]. Geophysical and Geochemical Exploration, 2023, 47(6): 1425-1432. |
|
|
|
|