|
|
|
| Extraction of geochemical anomalies from stream sediments in the giant granite-hosted lithium ore cluster within the middle segment of the Jiangnan Orogen |
LIU Shuang1( ), LU Ya-Xin2, ZHOU Xue-Gui1, WU Jun-Hua3, FENG Jia-Xin2, LI Yan-Jun2( ) |
1. Ecological Geology Brigade of Jiangxi Bureau of Geology, Nanchang 330025, China 2. School of Earth Resources, China University of Geosciences (Wuhan), Wuhan 430074, China 3. Jiangxi Bureau of Geology, Nanchang 330036, China |
|
|
|
|
Abstract In recent years, the Yifeng-Fengxin area of Jiangxi Province has witnessed significant breakthroughs in the exploration of granite-hosted lithium deposits, making it one of China's significant lithium ore clusters. However, there have been few reports on the application and achievements of lithium-related techniques. Focusing on 2,343 stream sediment samples from a 1∶50,000 geochemical survey in the Yifeng-Fengxin area, this study statistically analyzed geochemical parameters of over 20 elements. Subsequently, beryllium (Be), lithium (Li), niobium (Nb), rubidium (Rb), and tin (Sn) were determined as elements related to the mineralization and association of lithium deposit. Among these, Li and Sn showed strong enrichment and significant differentiation. Using statistical methods such as cluster and factor analyses, the five elements were further grouped into three assemblages: Rb-Be, Li-Sn, and Nb. Besides, this study processed and analyzed the stream sediment data from the Yifeng-Fengxin area using the iterative method, determining the lower threshold of both geochemical anomalies. Then, single-element and multi-element geochemical anomalies were investigated, with lithium identified as the primary ore-forming element. These anomalies, featuring prominence and large scale, were primarily situated in the northern and northeastern parts of the survey area, with concentration centers located in muscovite granite outcrops. The Li-Sn assemblage, serving as an indicator for granite-hosted lithium deposits, coincides well with the distribution of ore bodies. This confirms that Li-Sn assemblage anomalies in stream sediments can effectively delineate granite-hosted lithium deposits. Based on the anomaly characteristics from the 1∶50,000 stream sediment survey, two prospect areas were delineated in the periphery, providing guidance for further lithium exploration.
|
|
Received: 11 March 2025
Published: 30 December 2025
|
|
|
|
Corresponding Authors:
LI Yan-Jun
E-mail: 104638894@qq.com;liyj@cug.edu.cn
|
|
|
|
33] ">
|
The tectonic location (a) and the distribution of granite-type lithium deposits (b) in the Jiuling area[33]
|
|
The Q-Q probability graph of elements in stream sediments in the Yifeng-Fengxin area
|
| 元素 | 最大值/10-6 | 最小值/10-6 | 均值/10-6 | 标准差/10-6 | 变异系数(CV) | 富集系数(Q) | 全国水系沉积物背景值[43] | | Li | 4 800.00 | 1.50 | 251.00 | 392.0 | 1.56 | 8.37 | 30.0 | | Nb | 141.00 | 1.00 | 16.60 | 12.5 | 0.75 | 1.11 | 15.0 | | Rb | 2 580.00 | 5.00 | 442.00 | 345.0 | 0.78 | | | | Sn | 936.00 | 0 | 26.50 | 44.6 | 1.68 | 9.80 | 2.70 | | Be | 174.00 | 0.25 | 14.10 | 16.1 | 1.14 | 7.07 | 2.00 |
|
Geochemical parameters of stream sediments in the Yifeng-Fengxin area
|
|
R-type clustering analysis pedigtee of stream sediments from the Yifeng-Fengxin area
|
| 元素 | F1 | F2 | F3 | | Li | 0.53 | 0.50 | 0.65 | | Nb | 0.39 | 0.85 | 0.36 | | Rb | 0.78 | 0.43 | 0.42 | | Sn | 0.54 | 0.42 | 0.71 | | Be | 0.76 | 0.40 | 0.48 | | 特征值 | 1.90 | 1.47 | 1.46 | | 方差贡献率/% | 38.40 | 29.70 | 29.46 | | 累积贡献率/% | 38.40 | 68.10 | 97.56 |
|
Orthogonal rotation load matrix of stream sediments from the Yifeng-Fengxin area
|
| 元素 | 剔值后均 值/10-6 | 剔值后标准 差/10-6 | 异常下限 值/10-6 | 异常中带 值/10-6 | 异常内带 值/10-6 | | Li | 126.00 | 89.90 | 351 | 526 | 701 | | Nb | 13.10 | 5.67 | 27 | 41 | 55 | | Rb | 396.00 | 262.00 | 1051 | 1576 | 2102 | | Sn | 15.30 | 11.60 | 44 | 66 | 89 | | Be | 5.94 | 4.75 | 18 | 27 | 36 |
|
Lower limit and concentration zoning of single element anomaly values of stream sediments from the Yifeng-Fengxin area
|
|
Distribution of single-element geochemical anomalies in the Yifeng-Fengxin area
|
|
Li-Sn combination geochemical anomaly distribution in the Yifeng-Fengxin area
|
|
Integrated geochemical anomalies and prospective areas in the Yifeng-Fengxin area
|
| [1] |
Kesler S E, Gruber P W, Medina P A, et al. Global lithium resources:Relative importance of pegmatite,brine and other deposits[J]. Ore Geology Reviews, 2012, 48:55-69.
|
| [2] |
翟明国, 吴福元, 胡瑞忠, 等. 战略性关键金属矿产资源:现状与问题[J]. 中国科学基金, 2019, 33(2):106-111.
|
| [2] |
Zhai M G, Wu F Y, Hu R Z, et al. Critical metal mineral resources:Current research status and scientific issues[J]. Bulletin of National Natural Science Foundation of China, 2019, 33(2):106-111.
|
| [3] |
蒋少涌, 温汉捷, 许成, 等. 关键金属元素的多圈层循环与富集机理:主要科学问题及未来研究方向[J]. 中国科学基金, 2019, 33(2):112-118.
|
| [3] |
Jiang S Y, Wen H J, Xu C, et al. Earth sphere cycling and enrichment mechanism of critical metals:Major scientific issues for future research[J]. Bulletin of National Natural Science Foundation of China, 2019, 33(2):112-118.
|
| [4] |
陈骏. 关键金属超常富集成矿和高效利用[J]. 科技导报, 2019, 37(24):1.
|
| [4] |
Chen J. Metallogenesis and effective utilization ofstrategic-critical metals[J]. Science & Technology Review, 2019, 37(24):1.
|
| [5] |
Gourcerol B, Gloaguen E, Melleton J, et al. Re-assessing the European lithium resource potential-A review of hard-rock resources and metallogeny[J]. Ore Geology Reviews, 2019, 109:494-519.
|
| [6] |
Bradley D C, Stillings L L, Jaskula B W, et al. Lithium,chaper K of critical mineral resources of the United States-Economic and environmental geology and prospects for future supply[M]. USGS: Science for a changing world, 2017.
|
| [7] |
李建康, 刘喜方, 王登红. 中国锂矿成矿规律概要[J]. 地质学报, 2014, 88(12):2269-2283.
|
| [7] |
Li J K, Liu X F, Wang D H. The metallogenetic regularity of lithium deposit in China[J]. Acta Geologica Sinica, 2014, 88(12):2269-2283.
|
| [8] |
舒良树. 华南构造演化的基本特征[J]. 地质通报, 2012, 31(7):1035-1053.
|
| [8] |
Shu L S. An analysis of principal features of tectonic evolution in South China Block[J]. Geological Bulletin of China, 2012, 31(7):1035-1053.
|
| [9] |
王登红, 代鸿章, 刘善宝, 等. 中国锂矿十年来勘查实践和理论研究的十个方面新进展新趋势[J]. 地质力学学报, 2022, 28(5):743-764.
|
| [9] |
Wang D H, Dai H Z, Liu S B, et al. Ten aspects,new progress and new trends of exploration practice and theoretical research in China lithium mine in the past ten years[J]. Journal of Geomechanics, 2022, 28(5):743-764.
|
| [10] |
吴福元, 刘小驰, 纪伟强, 等. 高分异花岗岩的识别与研究[J]. 中国科学:地球科学, 2017, 47(7):745-765.
|
| [10] |
Wu F Y, Liu X C, Ji W Q, et al. Identification and study of high-resolution granite[J]. Scientia Sinica:Terrae, 2017, 47(7):745-765.
|
| [11] |
Che X D, Wang R C, Wu F Y, et al. Episodic Nb-Ta mineralisation in South China:Constraints from in situ LA-ICP-MS columbite-tantalite U-Pb dating[J]. Ore Geology Reviews, 2019, 105:71-85.
|
| [12] |
赵正, 陈毓川, 王登红, 等. 华南中生代动力体制转换与钨锡锂铍铌钽稀土矿床成矿系列的叠加演化[J]. 岩石学报, 2022, 38(2):301-322.
|
| [12] |
Zhao Z, Chen Y C, Wang D H, et al. Transformation of Mesozoic dynamic systems and superposition of metallogenic series of W-Sn-Li-Be-Nb-Ta-REE mineral deposits in South China[J]. Acta Petrologica Sinica, 2022, 38(2):301-322.
|
| [13] |
王登红, 代鸿章, 刘善宝, 等. 中国锂矿的多旋回深循环内外生一体化成矿理论及其找矿应用[J]. 地质学报, 2024, 98(3):889-897.
|
| [13] |
Wang D H, Dai H Z, Liu S B, et al. The “multi-cycle,deep circulation,integration of internal and external” theory of lithium deposits and its prospecting applications in China[J]. Acta Geologica Sinica, 2024, 98(3):889-897.
|
| [14] |
郭春丽, 张斌武, 郑义, 等. 中国花岗岩型锂矿床:重要特征、成矿条件及形成机制[J]. 岩石学报, 2024, 40(2):347-403.
|
| [14] |
Guo C L, Zhang B W, Zheng Y, et al. Granite-type lithium deposits in China:Important characteristics,metallogenic conditions,and genetic mechanism[J]. Acta Petrologica Sinica, 2024, 40(2):347-403.
|
| [15] |
陈祥云, 吴俊华, 唐维新, 等. 赣西地区新探明巨量花岗岩型锂矿资源[J]. 地球科学, 2023, 48(10):3957-3960.
|
| [15] |
Chen X Y, Wu J H, Tang W X, et al. Newly found giant granite-associated lithium resources in the western Jiangxi Province,South China[J]. Earth Science, 2023, 48(10):3957-3960.
|
| [16] |
李艳军, 吴俊华, 龚敏, 等. 江南造山带九岭南缘巨量锂多期成岩成矿作用[C]// 第十届全国成矿理论与找矿方法学术讨论会论文集, 2023:27-28.
|
| [16] |
Li Y J, Wu J H, Gong M, et al. The multi-stage diagenesis and mineralization of massive lithium in the southern margin of Jiuling in Jiangxi Orogenic Belt[C]// Proceedings of the 10th National Academic Symposium on Metallogenic Theory and Prospecting Methods,2023:27-28.
|
| [17] |
龚敏, 吴俊华, 季浩, 等. 赣西大港花岗岩型锂矿床锂赋存状态及成岩成矿年代学[J]. 地球科学, 2023, 48(12):4370-4386.
|
| [17] |
Gong M, Wu J H, Ji H, et al. Occurrence and diagenetic and metallogenic chronology of lithium in Dagang granite-type lithium deposit,western Jiangxi[J]. Earth Science, 2023, 48(12):4370-4386.
|
| [18] |
李仁泽, 周正兵, 彭波, 等. 江西宜丰县大港超大型含锂瓷石矿床地质特征及成因机制探讨[J]. 矿床地质, 2020, 39(6):1015-1029.
|
| [18] |
Li R Z, Zhou Z B, Peng B, et al. Discussion on the geological characteristics and genesis mechanism of the super-large lithium-bearing porcelain stone deposit in Dagang,Yifeng County,Jiangxi Province[J]. Mineral Deposits, 2020, 39(6):1015-1029.
|
| [19] |
Zhou M F, Gao J F, Zhao Z, et al. Introduction to the special issue of Mesozoic W-Sn deposits in South China[J]. Ore Geology Reviews, 2018, 101:432-436.
|
| [20] |
Shu L, Charvet J. Kinematics and geochronology of the Proterozoic Dongxiang-Shexian ductile shear zone:With HP metamorphism and ophiolitic melange (Jiangnan Region,South China)[J]. Tectonophysics, 1996, 267(1-4):291-302.
|
| [21] |
王孝磊, 周金城, 陈昕, 等. 江南造山带的形成与演化[J]. 矿物岩石地球化学通报, 2017, 36(5):714-735.
|
| [21] |
Wang X L, Zhou J C, Chen X, et al. Formation and evolution of Jiangnan orogenic belt[J]. Bulletin of Mineralogy,Petrology and Geochemistry, 2017, 36(5):714-735.
|
| [22] |
Yan J Y, Chen H, Deng J Z, et al. Lithospheric conductivity structure in the middle segment of the Jiangnan Orogenic Belt:Insights into Neoproterozoic tectonic-magmatic processes[J]. Lithosphere, 2024, 2024:1-14.
|
| [23] |
江西省地质矿产勘查开发局. 中国区域地质志:江西志[M]. 北京: 地质出版社, 2017.
|
| [23] |
Jiangxi Provincial Bureau of Geology and Mineral Resources Exploration and Development. Regional geology of China:Jiangxi Annals[M]. Beijing: Geological Publishing House, 2017.
|
| [24] |
段政, 廖圣兵, 褚平利, 等. 江南造山带东段新元古代九岭复式岩体锆石U-Pb年代学及构造意义[J]. 中国地质, 2019, 46(3):493-516.
|
| [24] |
Duan Z, Liao S B, Chu P L, et al. Zircon U-Pb ages of the Neoproterozoic Jiuling complex granitoid in the eastern segment of the Jiangnan orogen and its tectonic significance[J]. Geology in China, 2019, 46(3):493-516.
|
| [25] |
Sun J J, Shu L S, Santosh M, et al. Neoproterozoic tectonic evolution of the Jiuling terrane in the central Jiangnan orogenic belt (South China):Constraints from magmatic suites[J]. Precambrian Research, 2017, 302:279-297.
|
| [26] |
吴学敏, 周敏娟, 罗喜成, 等. 江西西北部锂及稀有金属成矿条件及找矿潜力分析[J]. 华东地质, 2016, 37(4):275-283.
|
| [26] |
Wu X M, Zhou M J, Luo X C, et al. The metallogenic conditions and prospecting potential of lithium and rare metals in northwestern Jiangxi[J]. East China Geology, 2016, 37(4):275-283.
|
| [27] |
Xie L, Liu Y, Wang R C, et al. Li-Nb-Ta mineralization in the Jurassic Yifeng granite-aplite intrusion within the Neoproterozoic Jiuling batholith,South China:A fluid-rich and quenching ore-forming process[J]. Journal of Asian Earth Sciences, 2019, 185:104047.
|
| [28] |
Jiang S Y, Su H M, Xiong Y Q, et al. Spatial-temporal distribution,geological characteristics and ore-formation controlling factors of major types of rare metal mineral deposits in China[J]. Acta Geologica Sinica-English Edition, 2020, 94(6):1757-1773.
|
| [29] |
徐净, 侯文达, 王力圆, 等. 稀有金属花岗岩结晶分异过程中铷的富集与成矿:来自江西甘坊岩体的矿物学证据[J]. 地质学报, 2023, 97(11):3766-3792.
|
| [29] |
Xu J, Hou W D, Wang L Y, et al. Rb mineralization during magmatic differentiation:Insight from mineralogical study on the Ganfang rare metal granite,Jiangxi Province[J]. Acta Geologica Sinica, 2023, 97(11):3766-3792.
|
| [30] |
张志辉, 张达, 贺晓龙, 等. 江西九岭杂岩体中黑云母花岗闪长岩年龄及对扬子和华夏板块碰撞拼合时间限定[J]. 中国地质, 2021, 48(5):1562-1579.
|
| [30] |
Zhang Z H, Zhang D, He X L, et al. Biotite granodiorite age of Jiuling complex in Jiangxi Province and its limitation on the collision and splicing time of the Yangtze and Cathay plates[J]. Geology in China, 2021, 48(5):1562-1579.
|
| [31] |
周建廷, 王国斌, 何淑芳, 等. 江西宜丰地区甘坊岩体成岩成矿作用分析[J]. 东华理工大学学报:自然科学版, 2011, 34(4):345-351,358.
|
| [31] |
Zhou J T, Wang G B, He S F, et al. Diagenesis and mineralization of Ganfang rock in Yifeng,Jiangxi Province[J]. Journal of East China Institute of Technology:Natural Science Edition, 2011, 34(4):345-351,358.
|
| [32] |
秦程. 江西宜丰狮子岭白云母花岗岩成矿潜力研究[D]. 北京: 中国地质大学(北京), 2018.
|
| [32] |
Cheng Q. Preliminary Study of Mineralization Potentiality of Shiziling Muscovite Granite,Jiangxi Province[D]. Beijing: China University of Geosciences (Beijing), 2018.
|
| [33] |
Wang D, Wang X L, Cai Y, et al. Heterogeneous conservation of zircon xenocrysts in Late Jurassic granitic intrusions within the Neoproterozoic jiuling batholith,South China:A magma chamber growth model in deep crustal hot zones[J]. Journal of Petrology, 2017, 58(9):1781-1810.
|
| [34] |
Wang D, Wang X L. Dual mixing for the formation of Neoproterozoic granitic intrusions within the composite Jiuling batholith,South China[J]. Contributions to Mineralogy and Petrology, 2021, 176(1):7.
|
| [35] |
Karger M, Sandomirsky S. Multidimensional statistical technique for detection of low contrast geochemical anomalies[J]. Journal of Geochemical Exploration, 2001, 72(1):47-58.
|
| [36] |
罗先熔, 文美兰, 欧阳菲, 等. 勘查地球化学[M]. 北京: 冶金工业出版社, 2007.
|
| [36] |
Luo X R, Wen M L, Ouyang F, et al. Exploration geochemistry[M]. Beijing: Metallurgical Industry Press, 2007.
|
| [37] |
翟玉林, 魏俊浩, 李艳军, 等. 青海大场金矿床地质地球化学找矿模型[J]. 地质科技情报, 2015, 34(6):100-107.
|
| [37] |
Zhai Y L, Wei J H, Li Y J, et al. Geological and geochemical prospecting model of the Dachang gold deposit,Qinghai Province[J]. Geological Science and Technology Information, 2015, 34(6):100-107.
|
| [38] |
刘劲松, 邹先武, 汤朝阳, 等. 大巴山地区水系沉积物地球化学特征及找矿方向[J]. 中国地质, 2016, 43(1):249-260.
|
| [38] |
Liu J S, Zou X W, Tang C Y, et al. Geochemical characteristics of stream sediments and ore-prospecting orientation in Daba Mountain area[J]. Geology in China, 2016, 43(1):249-260.
|
| [39] |
徐云峰, 郝雪峰, 秦宇龙, 等. 四川岔河地区水系沉积物地球化学特征及找矿方向[J]. 物探与化探, 2021, 45(3):624-638.
|
| [39] |
Xu Y F, Hao X F, Qin Y L, et al. Geochemical characteristics and prospecting direction of stream sediments in Chahe area,Sichuan Province[J]. Geophysical and Geochemical Exploration, 2021, 45(3):624-638.
|
| [40] |
袁和, 罗先熔, 李武毅, 等. 西藏邦卓玛地区土壤地球化学特征及找矿预测[J]. 地质与勘探, 2017, 53(3):472-481.
|
| [40] |
Yuan H, Luo X R, Li W Y, et al. Geochemical characteristics of soil and prospecting prediction of the Bangzhuoma Region,Tibet[J]. Geology and Exploration, 2017, 53(3):472-481.
|
| [41] |
付亚龙. 成分数据处理方法研究——以甘肃省尖山—平口峡地区1∶20万岩屑地球化学数据为例[D]. 西安: 长安大学, 2019.
|
| [41] |
Fu Y L. Study of composition data processing methods:Acase study of 1∶200,000 rock clique geochemical data in the Jianshan-Pingkouxia area of Giansu Province[D]. Xi'an: Changan University, 2019.
|
| [42] |
黄啸坤, 魏俊浩, 石文杰, 等. 基于汇水盆地的化探异常识别与评价:以东昆仑乌拉斯太地区1∶5万水系沉积物地球化学测量为例[J]. 地质科技通报, 2023, 42(1):324-338.
|
| [42] |
Huang X K, Wei J H, Shi W J, et al. Identification of the geochemical anomalies using the catchment basin analysis:A case study of 1∶50,000 geochemical survey of stream sediments in Wulasitai region,East Kunlun Orogenic Belt[J]. Bulletin of Geological Science and Technology, 2023, 42(1):324-338.
|
| [43] |
赵梦余. 基于地质统计学模拟及分形拓扑与奇异性分析的地球化学元素空间分布模式识别[D]. 武汉: 中国地质大学(武汉), 2023.
|
| [43] |
Zhao M Y. Identification of geochemical elements distribution patterns based on geostatistical simulation,fractal topography and singularity analysis[D]. Wuhan: China University of Geosciences (Wuhan), 2023.
|
| [44] |
李洁. 华南中生代稀有金属花岗岩岩浆演化与热液作用过程的矿物学约束[D]. 广州: 中国科学院研究生院广州地球化学研究所, 2015.
|
| [44] |
Li J. Mineralogical constraints on magmatic and hydrothermal evolutions of the Mesozoic rare-metal granites in South China[D]. Guangzhou: Guangzhou Institute of Geochemistry,Chinese Academy of Sciences, 2015.
|
| [45] |
史长义, 梁萌, 冯斌. 中国水系沉积物39种元素系列背景值[J]. 地球科学, 2016, 41(2):234-251.
|
| [45] |
Shi C Y, Liang M, Feng B. Average background values of 39 chemical elements in stream sediments of China[J]. Earth Science, 2016, 41(2):234-251.
|
| [1] |
ZENG Liang, YANG Ming-Long, PANG Yong, HUANG Jia-Zhong, BAI Ping-Yan, WANG Bing-Jun. Synergistic optimization and on-site fine-tuning methods for sampling point arrangement for geochemical survey in an alpine gorge area, Southwest China[J]. Geophysical and Geochemical Exploration, 2025, 49(6): 1343-1352. |
| [2] |
GONG Jian-Sheng, LANG Xing-Hai, WANG Zhao-Shuai, DENG Yu-Lin, WU Chang-Yi, HE Qing, LI Zhi-Jun, DING Feng, ZHAN Hong-Yu, LOU Yu-Ming. Geochemical characteristics and anomaly assessments of stream sediments in the Xiongcun ore concentration area and its periphery, Xietongmen County, Tibet[J]. Geophysical and Geochemical Exploration, 2025, 49(6): 1291-1302. |
|
|
|
|