|
|
|
| Basis for geophysical identification of syenites in the Luzong Basin |
LI Lei1,2( ), DUAN Zhuang1,2( ) |
1. Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences (CAGS), Tianjin 300309, China 2. State Key Laboratory of Deep Earth and Mineral Exploration, Institute of Geophysical and Geochemical Exploration, Chinese Academy of Geological Sciences, Tianjin 300309, China |
|
|
|
|
Abstract The Fe-Cu-U mineralization in the Luzong area in Anhui Province occurs primarily within the syenite mass and along its contact zone with surrounding rocks. Effectively delineating the syenite mass using geophysical exploration methods is a scientific issue that needs to be addressed urgently for mineral exploration breakthroughs in the Luzong area. Therefore, based on 358 rock samples from scientific drilling borehole ZK01 at a burial depth of 2 012 m in the Luzong area, this study measured their petrophysical properties, including density, magnetism (magnetic susceptibility and remanent magnetization intensity), electrical properties (resistivity and polarizability), and elastic wave velocity. The results indicate that syenites manifested low density and weak magnetic characteristics, providing prerequisites for syenite identification through gravity and magnetic explorations in borehole ZK01 or similar geological conditions. The strata and syenite-monzonite masses in the borehole exhibited medium-to-high resistivity characteristics with nonsignificant differences, increasing the difficulties in electrical prospecting. The syenite-monzonite masses displayed lower compressional and shear wave velocities compared to the volcanic layer in the Zhuanqiao Formation, laying a foundation for distinguishing strata from rock masses through seismic exploration.
|
|
Received: 31 December 2024
Published: 23 October 2025
|
|
|
|
|
|
13]) ">
|
Geological sketch map of the Luzong ore district(modified from Zhang, et al.[13])
|
|
Statistical of rock density from Luzong scientific drilling
|
| 地质单元 | 单元统计(数量、范围、取值) | 岩石名称 | 数量 | 最小值 | 最大值 | 均值 | | 上白垩统砖桥组 | N=247 2.508~3.145 2.751 | 粗安岩 | 91 | 2.608 | 2.891 | 2.732 | | 辉石粗安岩 | 20 | 2.707 | 2.794 | 2.752 | | 晶屑凝灰岩 | 19 | 2.663 | 2.941 | 2.826 | | 含砾晶屑凝灰岩 | 11 | 2.631 | 2.869 | 2.734 | | 硬石膏化粗安岩 | 37 | 2.684 | 2.869 | 2.765 | | 黄铁矿化粗安岩 | 34 | 2.694 | 3.048 | 2.790 | | 杏仁状粗安岩 | 13 | 2.661 | 3.145 | 2.797 | | 高岭石化粗安岩 | 22 | 2.508 | 2.778 | 2.661 | | 上白垩统正长岩 | N=61 2.583~2.924 2.671 | 硅化正长岩 | 8 | 2.634 | 2.691 | 2.661 | | 辉石正长岩 | 5 | 2.631 | 2.740 | 2.684 | | 石英正长岩 | 39 | 2.583 | 2.924 | 2.675 | | 正长岩 | 9 | 2.621 | 2.726 | 2.654 | | 上白垩统二长岩 | N=50 2.603~2.991 2.723 | 黑云母石英二长岩 | 32 | 2.625 | 2.773 | 2.710 | | 石英二长(斑)岩 | 12 | 2.657 | 2.991 | 2.765 | | 石英二长岩 | 6 | 2.603 | 2.769 | 2.705 |
|
Statistical of rock density from Luzong scientific drilling g/cm3
|
| 地质单元 | 岩石名称 | 数 量 | 磁化率/10-6 SI | 剩磁强度/(10-3 A·m-1) | Q 中值 | 地质单元统计(数 量、范围、均值) | 最小值 | 最大值 | 中值 | 地质单元统计(数 量、范围、均值) | 最小值 | 最大值 | 中值 | 上白垩统 砖桥组 | 粗安岩 | 91 | N=247 8.2~137817.2 14514.9 | 489.5 | 137817.2 | 37449.5 | N=247 0.155~32974.306
169.786 | 1.267 | 32974.306 | 238.441 | 0.2 | | 辉石粗安岩 | 20 | 1243.0 | 105023.4 | 21342.3 | 5.177 | 1766.602 | 366.339 | 0.2 | | 晶屑凝灰岩 | 19 | 11.3 | 120069.0 | 29433.9 | 0.191 | 8195.713 | 197.042 | 0.2 | | 含砾晶屑凝灰岩 | 11 | 32.4 | 103706.6 | 1416.9 | 0.468 | 754.756 | 24.655 | 0.2 | | 硬石膏化粗安岩 | 37 | 8.2 | 65346.5 | 2148.7 | 0.155 | 5109.174 | 45.033 | 0.4 | | 黄铁矿化粗安岩 | 34 | 59.9 | 64283.0 | 895.5 | 1.087 | 2812.600 | 11.939 | 0.3 | | 杏仁状粗安岩 | 13 | 793.6 | 118070.9 | 64350.5 | 7.339 | 2777.487 | 447.489 | 0.2 | | 高岭石化粗安岩 | 22 | 50.8 | 55671.5 | 841.9 | 0.756 | 426.685 | 125.004 | 0.3 | 上白垩统 正长岩 | 硅化正长岩 | 8 | N=61 89.5~84702.9 1726.3 | 89.5 | 82501.1 | 2189.1 | N=61 1.192~449.262 24.596 | 1.433 | 415.251 | 19.740 | 0.3 | | 辉石正长岩 | 5 | 733.8 | 42162.1 | 3024.1 | 9.386 | 331.883 | 45.172 | 0.3 | | 石英正长岩 | 39 | 357.4 | 84702.9 | 3574.6 | 3.632 | 449.262 | 30.387 | 0.2 | | 正长岩 | 9 | 131.0 | 1186.6 | 426.2 | 1.192 | 9.056 | 5.711 | 0.3 | 上白垩统 二长岩 | 黑云母石英二长岩 | 32 | N=50 156.0~162378.6 76973.6 | 156.0 | 118285.9 | 66861.0 | N=50 8.944~1509.819 202.632 | 8.944 | 648.466 | 154.577 | 0.1 | | 石英二长(斑)岩 | 12 | 2758.0 | 162378.6 | 48221.3 | 23.713 | 1509.819 | 227.498 | 0.1 | | 石英二长岩 | 6 | 15852.3 | 86000.3 | 53631.6 | 195.238 | 377.871 | 260.225 | 0.1 |
|
Statistical of rock magnetism from Luzong scientific drilling
|
|
Statistical of rock magnetism from Luzong scientific drilling
|
|
Scatter plot of magnetic bivariate distribution (susceptibility and remanent magnetization) versus Q-value distribution
|
|
Box plot of the distribution of chemical oxide contents in some rocks
|
| 地质单元 | 岩石名称 | 数量 | 电阻率/(Ω·m) | 极化率/% | 地质单元统计 (数量、范围、中值) | 最小值 | 最大值 | 中值 | 地质单元统计 (数量、范围、中值) | 最小值 | 最大值 | 中值 | 上白垩统 砖桥组 | 粗安岩 | 78 | N=218 38.8~60154.6 2827.7 | 38.8 | 60154.6 | 8031.6 | N=218 0.2~77.1 2.1 | 0.3 | 4.6 | 1.8 | | 辉石粗安岩 | 17 | 300.6 | 13824.1 | 1968.8 | 0.2 | 2.9 | 1.6 | | 晶屑凝灰岩 | 17 | 85.0 | 15471.0 | 4951.3 | 0.6 | 4.7 | 2.4 | | 含砾晶屑凝灰岩 | 7 | 91.0 | 11983.0 | 3767.5 | 0.2 | 4.4 | 3.3 | | 硬石膏化粗安岩 | 34 | 175.5 | 14218.2 | 1335.5 | 0.7 | 6.7 | 2.2 | | 黄铁矿化粗安岩 | 33 | 100.4 | 14320.4 | 1872.5 | 1.2 | 77.1 | 5.6 | | 杏仁状粗安岩 | 13 | 197.3 | 20118.5 | 2227.8 | 1.0 | 4.4 | 2.1 | | 高岭石化粗安岩 | 19 | 40.3 | 20991.8 | 216.0 | 0.3 | 4.8 | 0.6 | 上白垩统 正长岩 | 硅化正长岩 | 3 | N=52 449.6~11764.5 3291.7 | 1601.2 | 3845.8 | 2521.2 | N=52 0.5~16.5 2.4 | 1.1 | 1.8 | 1.4 | | 辉石正长岩 | 5 | 2877.5 | 114764.5 | 4279.7 | 0.7 | 6.3 | 1.6 | | 石英正长岩 | 35 | 449.6 | 8443.7 | 3183.0 | 0.5 | 16.5 | 3.6 | | 正长岩 | 9 | 498.3 | 5719.0 | 2753.5 | 0.5 | 4.0 | 1.3 | 上白垩统 二长岩 | 黑云母石英二长岩 | 32 | N=47 428.6~15199.3 5386.2 | 1294.9 | 15199.3 | 5457.5 | N=47 1.0~34.4 2.8 | 1.0 | 5.5 | 2.6 | | 石英二长(斑)岩 | 11 | 428.6 | 10444.0 | 3918.5 | 1.3 | 34.4 | 4.9 | | 石英二长岩 | 4 | 1720.4 | 11444.3 | 4425.2 | 1.6 | 6.4 | 3.1 |
|
Statistical of electrical properties of rocks from Luzong scientific drilling
|
|
Statistical of electrical properties of rocks from Luzong scientific drilling
|
| 地质单元 | 岩石名称 | 数量 | 纵波速度/(m·s-1) | 横波速度/(m·s-1) | 地质单元统计 (数量、范围、中值) | 最小值 | 最大值 | 中值 | 地质单元统计 (数量、范围、中值) | 最小值 | 最大值 | 中值 | 上白垩统 砖桥组 | 粗安岩 | 56 | N=153 3340~6774 5347 | 4441 | 6019 | 5345 | N=153 2007~4113 3231 | 2825 | 3851 | 3300 | | 辉石粗安岩 | 13 | 4824 | 6068 | 5523 | 2996 | 3472 | 3143 | | 晶屑凝灰岩 | 12 | 4521 | 6774 | 5472 | 2677 | 4113 | 3267 | | 含砾晶屑凝灰岩 | 3 | 4910 | 5567 | 5348 | 2950 | 3328 | 3202 | | 硬石膏化粗安岩 | 22 | 4789 | 5721 | 5565 | 2960 | 3462 | 3196 | | 黄铁矿化粗安岩 | 27 | 4567 | 6042 | 5207 | 2698 | 3454 | 3118 | | 杏仁状粗安岩 | 6 | 5218 | 5982 | 5545 | 3176 | 3554 | 3258 | | 高岭石化粗安岩 | 14 | 3340 | 5903 | 4518 | 2007 | 3589 | 2653 | 上白垩统 正长岩 | 硅化正长岩 | 4 | N=41 4466~5619 5000 | 4920 | 5172 | 5040 | N=41 2593~3333 2877 | 2828 | 3071 | 2931 | | 辉石正长岩 | 3 | 4466 | 4990 | 4788 | 2625 | 2954 | 2826 | | 石英正长岩 | 30 | 4475 | 5619 | 4923 | 2593 | 3333 | 2886 | | 正长岩 | 4 | 5079 | 5202 | 5148 | 2984 | 3064 | 3023 | 上白垩统 二长岩 | 黑云母石英二长岩 | 29 | N=38 4187~5839 4911 | 4187 | 5552 | 4859 | N=38 2442~3596 2885 | 2442 | 3267 | 2849 | | 石英二长(斑)岩 | 9 | 5120 | 5839 | 5517 | 3053 | 3596 | 3288 |
|
Statistical of rock wave velocities from Luzong scientific drilling
|
|
Statistical graph of rock wave velocities from Luzong scientific drilling
|
| 数据来源 | 物性参数 | | 密度/(g·cm-3) | 磁化率/(10-6 SI) | 电阻率/(Ω·m) | 纵波速度/(m·s-1) | | 本文 | 砖桥组/粗安岩 | 2.608~2.891 (平均值:2.732) | 489.9~137817.2 (平均值:37449.5) | 38.8~60154.6 (平均值:8031.6) | 4441~6019 (平均值:5345) | | 二长岩 | 2.603~2.991 (平均值:2.723) | 156.0~162378.6 (平均值:76973.6) | 428.6~15199.3 (平均值:5386.2) | 4187~5839 (平均值:4911) | | 正长岩 | 2.583~2.924 (平均值:2.671) | 89.5~84702.9 (平均值:1726.3) | 449.6~11764.5 (平均值:3291.7) | 4466~5619 (平均值:5000) | | 测井 | 砖桥组/粗安岩 | 1.27~3.12 (平均值:2.79) | 83700~215800 (平均值:90000) | 4~3785 (平均值:170) | 1600~6425 (平均值:5800) | | 二长岩 | 2.32~3.07 (平均值:2.75) | 94100~207500 (平均值:121900) | 1183~12265 (平均值:6200) | 5435~6536 (平均值:5435) | | 正长岩 | 1.63~3.14 (平均值:2.66) | 93700~124900 (平均值:94500) | 509~11187 (平均值:5000) | 4739~6934 (平均值:5800) | | 文献[8] | 下白垩统—上侏罗 统/粗安岩等 | 地表2.50 钻孔2.70 | 640~24540 | n×102~1×103 | — | | 二长岩 | 2.60 | 89500 | 7×103 | — | | 正长岩 | 2.49 | 95980 | 7×103 | — | | 文献[20] | 下白垩统—上侏罗 统/粗安岩等 | 地表2.51 钻孔2.61 | 15079.6 | — | — | | 二长岩 | 2.62 | 50265.5 | — | — | | 正长岩 | 地表2.48 钻孔2.58 | 18849.6 | — | — |
|
Comparison of petrophysical data in this paper and previous studies
|
|
Schematic diagram of integrated petrophysical logging for borehole ZK01 in Luzong
|
| [1] |
王达, 赵国隆, 左汝强, 等. 地质钻探工程的发展历程与展望[J]. 探矿工程:岩土钻掘工程, 2019, 46(9):1-31.
|
| [1] |
Wang D, Zhao G L, Zuo R Q, et al. The development and outlook of geological drilling engineering[J]. Exploration Engineering:Rock & Soil Drilling and Tunneling, 2019, 46(9):1-31.
|
| [2] |
熊欣, 徐文艺, 杨竹森, 等. 庐枞盆地高温铀钍矿化特征、成因及其找矿意义——来自砖桥组科学深钻ZK01的证据[J]. 岩石学报, 2014, 30(4):1017-1029.
|
| [2] |
Xiong X, Xu W Y, Yang Z S, et al. Characteristics and genesis of hypothermal uranium and thorium mineralization in Luzong Basin:Evidence from the scientific drilling ZK01 at Zhuanqiao[J]. Acta Petrologica Sinica, 2014, 30(4):1017-1029.
|
| [3] |
高文利, 孔广胜, 潘和平, 等. 庐枞盆地科学钻探地球物理测井及深部铀异常的发现[J]. 地球物理学报, 2015, 58(12):4522-4533.
|
| [3] |
Gao W L, Kong G S, Pan H P, et al. Geophysical logging in scientific drilling borehole and find of deep uranium anomaly in Luzong Basin[J]. Chinese Journal of Geophysics, 2015, 58(12),4522-4533.
|
| [4] |
张舒, 吴明安, 汪晶, 等. 安徽庐枞盆地与正长岩有关的成矿作用[J]. 地质学报, 2014, 88(4):519-531.
|
| [4] |
Zhang S, Wu M A, Wang J, et al. The mineralization related with the syenite in Luzong Basin,Anhui Province[J]. Acta Geologica Sinica, 2014, 88(4):519-531.
|
| [5] |
高锐, 卢占武, 刘金凯. 庐枞金属矿集区深地震反射剖面解释结果——揭露地壳精细结构追踪成矿深部过程[J]. 岩石学报, 2010, 26(9):2543-2552.
|
| [5] |
Gao R, Lu Z W, Liu J K, et al. A result of interpreting from deep seismic reflection profile Revealing fine structure of the crust and tracing deep process of the mineralization in Lu-zong deposit area[J]. Acta Petrologica Sinica, 2010, 26(9):2543-2552.
|
| [6] |
吕庆田, 韩立国, 严加永, 等. 庐枞矿集区火山气液型铁、硫矿床及控矿构造的反射地震成像[J]. 岩石学报, 2010, 26(9):2598-2612.
|
| [6] |
Lyu Q T, Han L G, Yan J Y, et al. Seismic imaging of volcanic hydrothermal iron-sulfur deposits and its hosting structure in Luzong ore district[J]. Acta Petrologica Sinica, 2010, 26(9):2598-2612.
|
| [7] |
肖晓, 王显莹, 汤井田, 等. 安徽庐枞矿集区大地电磁探测与电性结构分析[J]. 地质学报, 2014, 88(4):478-495.
|
| [7] |
Xiao X, Wang X Y, Tang J T, et al. Conductivity structure of the Lujiang-Zongyang ore concentrated area,Anhui Province:Constraints from magnetotelluric data[J]. Acta Geologica Sinica, 2014, 88(4):478-495.
|
| [8] |
朱将波, 汪启年, 崔先文. 安徽庐枞盆地中段重磁电特征及地质意义[J]. 中国地质调查, 2022, 9(3):87-95.
|
| [8] |
Zhu J B, Wang Q N, Cui X W. Features and geological significance of gravity-magnetic-electric from the middle part of Lujiang-Zongyang Basin in Anhui Province[J]. Geological Survey of China, 2022, 9(3):87-95.
|
| [9] |
严加永, 吕庆田, 陈向斌, 等. 基于重磁反演的三维岩性填图试验——以安徽庐枞矿集区为例[J]. 岩石学报, 2014, 30(4):1041-1053.
|
| [9] |
Yan J Y, Lyu Q T, Chen X B, et al. 3D lithologic mapping test based on 3D inversion of gravity and magnetic data: A case study in Lu-Zong ore concentration district,Anhui Province[J]. Acta Petrologica Sinica, 2014, 30 (4):1041-1053.
|
| [10] |
张季生, 高税, 李秋生, 等. 庐枞火山岩盆地及其外围重、磁场特征[J]. 岩石学报, 2010, 26(9):2613-2622.
|
| [10] |
Zhang J S, Gao R, Li Q S, et al. Charcacteristics of gravity and magnetic field of Luzong volcano basin and its periphery[J]. Acta Petrologica Sinica, 2010, 26 (9):2613-2622.
|
| [11] |
周涛发, 范裕, 袁峰, 等. 庐枞盆地侵入岩的时空格架及其对成矿的制约[J]. 岩石学报, 2010, 26(9):2694-2714.
|
| [11] |
Zhou T F, Fan Y, Yuan F, et al. Temporal-spatial frame work of magmatic instrusions in Luzong volcanic basin in East China and their constrain to mineralizations[J]. Acta Petrologica Sinica, 2010, 26(9):2694-2714.
|
| [12] |
张舒, 周涛发, 吴明安, 等. 长江中下游成矿带庐枞盆地科学深钻中侵入岩年代学及地球化学研究[J]. 地质学报, 2017, 91(7):1483-1505.
|
| [12] |
Zhang S, Zhou T F, Wu M A, et al. Geochronolgy and petrological geochemistry of intrusions in the Lujiang-Zongyang basin in the mineralization belt of the middle and lower reaches of Yangtze River revealed by scientific drilling[J]. Acta Geologica Sinica, 2017, 91(7):1483-1505.
|
| [13] |
张舒, 张赞赞, 胡召齐, 等. 长江中下游成矿带庐枞矿集区花岗岩型铀矿床成矿作用研究进展[J]. 现代地质, 2023, 37(6):1435-1448.
|
| [13] |
Zhang S, Zhang Z Z, Hu Z Q, et al. Progress on metallogenic research of granite-related uranium deposits from Luzong ore district in the middle and lower research of Yangtze River metallogenic belt[J]. Geoscience, 2023 37(6):1435-1448.
|
| [14] |
马腾飞. 庐枞矿集区三维地质地球物理建模技术研究[D]. 北京: 中国地质科学院, 2013.
|
| [14] |
Ma T F. Research on 3D geological and geophysical modeling of Lujiang-Zongyang ore district[D]. Beijing: Chinese Academy of Geological Science, 2013.
|
| [15] |
杨辟元. 物性工作手册[M]. 北京: 地质出版社,1994.
|
| [15] |
Yang P Y. Rock physical properties handbook[M]. Beijing: Geological Publishing House,1994.
|
| [16] |
李磊, 陈晓东, 郭友钊. RP-1型岩矿石电性测量系统研制[J]. 物探与化探, 2013, 37(3):529-532.
|
| [16] |
Li L, Chen X D, Guo Y Z. The development of RP-1 instrument for electrical measuring of rocks and minerals[J]. Geophysical and Geochemical Exploration, 2013, 37(3):529-532.
|
| [17] |
管志宁. 地磁场与磁力勘探[M]. 北京: 地质出版社, 2005.
|
| [17] |
Guan Z N. Geomagnetic field and magnetic exploration[M]. Beijing: Geological Publishing House, 2005.
|
| [18] |
李金铭. 地电场与电法勘探[M]. 北京: 地质出版社, 2005.
|
| [18] |
Li J M. Geoelectric field and electrical prospecting[M]. Beijing: Geological Publishing House, 2005.
|
| [19] |
乐昌硕. 岩石学[M]. 北京: 地质出版社,1984.
|
| [19] |
Le C S. Petrology[M]. Beijing: Geological Publishing House,1984.
|
| [20] |
陈应军. 基于重磁三维反演的庐枞矿集区岩性填图试验[D]. 南昌: 东华理工大学, 2014.
|
| [20] |
Chen Y J. A lithological mapping test based on 3D inversion of gravity and magnetic in Lu-zong ore concentration district[D]. Nanchang: East China Institute of Technology, 2014.
|
| [21] |
Herbert H. Petrophysical properties(density and magnetization) of rocks from the northern part of the Baltic Shield[J]. Tectonophysics, 1991,192:1-19.
|
| [22] |
Randolph J E. The rock physical property database of british Columbia, and the distinct petrophysical signature of the Chilcotin basalts[J]. Canadian Journal of Earth Sciences, 2014,15:327-338.
|
| [1] |
ZHANG Hong-Yan, ZHAO Huan, GUO Peng. Geochemical characteristics and deep metallogenic prediction of the Laowan gold belt in Tongbai County, Henan Province[J]. Geophysical and Geochemical Exploration, 2025, 49(5): 1039-1052. |
| [2] |
WU Yi, ZHOU Chang-Suo, XU Guo-Xian, YUAN Jun-Liang, SONG Xiao-Lin, ZENG Yong-Jian, WANG Qun-Wu, ZHANG Kui. A method for fracture density prediction and fluid identification of fractured reservoirs based on azimuthal anisotropic inversion[J]. Geophysical and Geochemical Exploration, 2025, 49(5): 1173-1189. |
|
|
|
|