|
|
Application of Baidu Comate-based AI technology to the automatic numbering of sampling points in irregular geochemical networks |
WANG Xuan1,2( ), YANG Huan1,2, WANG Ran1,2, LI Ying1,2( ), WANG Hai-Peng1,2, LIU Yan-Song1,2, LIAO Jun-Yu1,2, ZHANG Cheng-Bin1,2, ZHANG Xu-Dong1,2 |
1. Liaoning Institute of Geological Exploration Co., Ltd., Dalian 116100, China 2. Liaoning High-Resolution Observation System Application and Service Center of Geological Resources and Environmental, Dalian 116100, China |
|
|
Abstract In the era of rapid digitalization development, artificial intelligence (AI) technology has brought revolutionary changes to traditional work patterns. Based on Baidu Comate, this study proposed an automatic numbering method for sampling points in irregular geochemical networks. Automatic numbering tests, conducted on 12 000 geochemical sampling points, demonstrate that the method improved the efficiency by 99.8% and achieved 100% accuracy compared to the traditional manual method. This indicates that the proposed method is more efficient and accurate than traditional approaches, effectively avoiding human errors and improving work efficiency. This study also discussed the challenges AI faces in processing complex instructions, the importance of instruction clarity, the identification of complex logic, and the necessity of developing knowledge reserves. Although AI technology has significantly improved the efficiency and accuracy of the automatic numbering of sampling points in irregular geochemical networks, the early development of packaging tools requires personnel who can read codes to modify and verify the codes. Additionally, AI-assisted demand processing should be in phases, and ultimately, it is necessary to encapsulate verified codes into a tool for reuse.
|
Received: 02 May 2024
Published: 22 April 2025
|
|
|
|
|
13] ">
|
Schematic diagram of the layout of geochemical sampling points[13]
|
|
Steps of using AI development
|
|
Implementation steps of automatic numbering of geochemical irregular network sampling points
|
|
Large grid feature class generation results
|
|
Small grid feature class generation results
|
|
Sampling point generation results
|
[1] |
郭乃瑄, 董琴, 徐秀芳, 等. 基于文心一言的数据结构课程教学方法初探[J]. 科教文汇, 2023(21):95-100.
|
[1] |
Guo N X, Dong Q, Xu X F, et al. Study on the teaching method of data structure course based on ERNIE Bot[J]. Journal of Science and Education, 2023(21):95-100.
|
[2] |
杜庆贤. ChatGPT在财会工作中的应用探索——基于文心一言、ChatGPT、ChatSonic测试[J]. 会计之友, 2024(4):130-137.
|
[2] |
Du Q X. Exploring the application of ChatGPT in accounting work——Based on the tests of ERNIE Bot,ChatGPT,and ChatSonic[J]. Friends of Accounting, 2024(4):130-137.
|
[3] |
李丰丹, 刘畅, 刘园园, 等. 地质调查智能空间框架构建与实践[J]. 地质论评, 2019, 65(S1):317-320.
|
[3] |
Li F D, Liu C, Liu Y Y, et al. Construction and application of the geological survey intelligent space[J]. Geological Review, 2019, 65(S1):317-320.
|
[4] |
孙焕振, 周庆来, 叶家瑜. 1:20万区域化探采样和样品分析工作的质量评分及质量等级的评定[J]. 物探与化探, 1989, 13(3):172-179.
|
[4] |
Sun H Z, Zhou Q L, Ye J Y. The marking of quality and evaluation ofquality grade for sample collection andanalysis in 1:200,000 regional geochemicalprospecting[J]. Geophysical and Geochemical Exploration, 1989, 13(3):172-179.
|
[5] |
吴正昌, 王会敏, 江俊杰, 等. 水系沉积物地球化学普查中若干问题探讨[J]. 物探与化探, 2018, 42(5):932-936.
|
[5] |
Wu Z C, Wang H M, Jiang J J, et al. A tentative discussion on some problems in geochemical survey of stream sediments[J]. Geophysical and Geochemical Exploration, 2018, 42(5):932-936.
|
[6] |
彭敏, 李括, 刘飞, 等. 东北平原区地块尺度土地质量地球化学评价合理采样密度研究[J]. 物探与化探, 2019, 43(2):338-350.
|
[6] |
Peng M, Li K, Liu F, et al. Reasonable sampling density for land parcel scale geochemical assessment on land quality in Northeast China Plain[J]. Geophysical and Geochemical Exploration, 2019, 43(2):338-350.
|
[7] |
严己宽, 玉强忠. 地球化学勘查固体样品采集的野外质量评价指标[J]. 物探与化探, 2018, 42(6):1112-1115.
|
[7] |
Yan J K, Yu Q Z. The field quality evaluation index of solid sampling in geochemical exploration[J]. Geophysical and Geochemical Exploration, 2018, 42(6):1112-1115.
|
[8] |
刘彬. 基于MapGIS和Section实现采样点号自动标注[J]. 现代矿业, 2017, 33(7):183-184.
|
[8] |
Liu B. Implementing automatic annotation of sampling point numbers based on MapGIS and section[J]. Modern Mining, 2017, 33(7):183-184.
|
[9] |
郭伟伟. 浅析MapGIS在化探采样点位设计图的应用[J]. 西部探矿工程, 2016, 28(2):167-168,173.
|
[9] |
Guo W W. Analysis of the application of MapGIS in the design of geochemical sampling points[J]. West-China Exploration Engineering, 2016, 28(2):167-168,173.
|
[10] |
冯伟华, 陈恩科, 张随安, 等. 基于VBA实现设计点位编号和坐标提取[J]. 物探化探计算技术, 2014, 36(2):247-251.
|
[10] |
Feng W H, Chen E K, Zhang S A, et al. Based on the VBA realization the design point site number and extraction coordinate[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2014, 36(2):247-251.
|
[11] |
张茂忠, 杨乐超, 陈琦伟, 等. 化探异常编号与异常评价自动化方法[J]. 物探与化探, 2014, 38(2):396-401.
|
[11] |
Zhang M Z, Yang L C, Chen Q W, et al. the automatic method for anomaly numbering and anomaly evaluation[J]. Geophysical and Geochemical Exploration, 2014, 38(2):396-401.
|
[12] |
陈可忠. 化探采样点自动编号及航点自动生成的方法[J]. 四川地质学报, 2014, 34(S1):60-65.
|
[12] |
Chen K Z. A method for automatic numbering of geochemical sampling points and automatic generation of waypoints[J]. Acta Geologica Sichuan, 2014, 34(S1):60-65.
|
[13] |
王海鹏, 孙海龙, 鲁红峰, 等. MapGIS条件下完美实现不规则网化探采样点自动编号[J]. 吉林地质, 2015, 34(1):90-92,105.
|
[13] |
Wang H P, Sun H L, Lu H F, et al. Irregular network geochemical exploration sample points number automatically by MapGIS[J]. Jilin Geology, 2015, 34(1):90-92,105.
|
[14] |
李永春. 化探点位设计图采样点自动编号方法[J]. 内蒙古煤炭经济, 2016(7):20,31.
|
[14] |
Li Y C. Sampling automatic numbering method for geochemical exploration point bit design[J]. Inner Mongolia Coal Economy, 2016(7):20,31.
|
[15] |
李晓青, 丁礼江, 石宁, 等. 基于FME的化探采样点自动编号[J]. 地矿测绘, 2019, 35(1):11-13,24.
|
[15] |
Li X Q, Ding L J, Shi N, et al. Automatic numbering of geochemical exploration sample points based on FME[J]. Surveying and Mapping of Geology and Mineral Resources, 2019, 35(1):11-13,24.
|
[16] |
新浪财经. 2024百度Create大会李彦宏带来三大AI开发工具,演讲实录来了![N/OL]. https://baijiahao.baidu.com/s?id=1796463369412210711&wfr=spider&for=pc.
|
[16] |
Sina Finance. Robin Lee brings three AI development tools to the 2024 Baidu Create Conference![N/OL]. https://baijiahao.baidu.com/s?id=1796463369412210711&wfr=spider&for=pc.
|
[17] |
第一财经. 李彦宏称百度每日新增代码有27%由AI生成[N/OL]. https://baijiahao.baidu.com/s?id=1796456227535203935&wfr=spider&for=pc.
|
[17] |
First Financial. Robin Lee said that 27% of Baidu's daily new codes are generated by AI[N/OL]. https://baijiahao.baidu.com/s?id=1796456227535203935&wfr=spider&for=pc.
|
[18] |
赵军鹏, 刘军. 基于Python的ArcGIS(Arcpy)数据检查技术应用[J]. 河北林业科技, 2021(2):61-63.
|
[18] |
Zhao J P, Liu J. Application on ArcGIS(Arcpy) data inspection technology based on Python[J]. The Journal of Hebei Forestry Science and Technology, 2021(2):61-63.
|
[19] |
张宇冉, 杨秋莲, 冯媛媛, 等. 基于ArcGIS Python的Shapefile批量合并方法实现与工具设计[J]. 测绘与空间地理信息, 2021, 44(2):77-78,82.
|
[19] |
Zhang Y R, Yang Q L, Feng Y Y, et al. Implementation and tool design of Shapefile batch merging based on ArcGIS Python[J]. Geomatics and Spatial Information Technology, 2021, 44(2):77-78,82.
|
[20] |
孙亚珍, 马明, 姜淑颖. 基于ArcGIS Python的图斑八邻信息提取方法[J]. 林业科技通讯, 2023(11):11-16.
|
[20] |
Sun Y Z, Ma M, Jiang S Y. Eight-neighbor information extraction method of image spot based on ArcGIS Python[J]. Forest Science and Technology, 2023(11):11-16.
|
[21] |
孙跃龙, 鞠立华. 基于ArcGIS Pro平台的Python编程在勘探测量中的应用[J]. 科技创新与应用, 2024, 14(5):168-171.
|
[21] |
Sun Y L, Ju L H. Application of Python programming based on ArcGIS Pro platform in exploration and measurement[J]. Technology Innovation and Application, 2024, 14(5):168-171.
|
[1] |
WU Wei-Zhi, LOU Li, WANG Peng, WANG Bin. A Python-based scheme of Rayleigh-wave dispersion inversion[J]. Geophysical and Geochemical Exploration, 2022, 46(3): 743-749. |
[2] |
ZHANG Wei, QIU Chong-Tao, XIE Ming-Hong, ZHAO Cong. Automatic drawing of geological interpretation map by Python[J]. Geophysical and Geochemical Exploration, 2021, 45(1): 186-191. |
|
|
|
|