|
|
A multiparameter fusion methodology of well depth design for seismic excitation in weakly elastic media |
BAO Hong-Gang( ) |
R&D Center of Science and Technology,Sinopec Geophysical Corporation,Nanjing 211112,China |
|
|
Abstract Due to numerous thin interbeds in weakly elastic media,seismic excitation typically yields rapidly attenuated seismic wave energy and a narrow dominant frequency band,resulting in low-resolution seismic data.Therefore,selecting a favorable lithology plays a crucial role in improving the seismic excitation effect.This study explored the dominant factors influencing the quality of seismic data obtained from the northern Jiangsu exploration area,a region with a dense river system.Specifically,this study determined the top boundary of the high-velocity layer based on microlog surveys and the dominant lithologic member using the cone penetration test and lithologic coring.It quantitatively analyzed seismic wavelet attributes,including octave band,resolution,main-to-side lobe energy ratio,and wavelet clarity,establishing their matching relationship with the lithology for seismic excitation.By selecting a lithologic surface featuring a high seismic wave propagation velocity,a favorable elastic property,and a wide frequency band in the study area,it plotted a surface lithology map for pointwise well depth design,ensuring wide-frequency excitation.The above techniques were applied to well depth design for seismic excitation in the YA and SDX areas,achieving well-normalized single-shot frequencies and widening the dominant frequency band of the target layer in the seismic profile by over 10 Hz,with an increase of 1.5 octave bands.The results show that the excitation strategy of "selecting the dominant lithology from weakly elastic media" in regions with dense river systems can effectively enhance the seismic excitation effect in weakly elastic media,thereby improving the imaging accuracy and resolution of seismic data.
|
Received: 09 September 2024
Published: 22 April 2025
|
|
|
|
|
参数 | 含义 | 单位 | a | 炸药爆炸形成的球形空腔的半径 | m | P0 | 作用于空腔内壁上的初始压力 | N·m-2 | E | 杨氏模量 | Pa | r | 波的传播距离 | m | t | 波的传播时间 | s | k | 圆频率 | Hz |
|
The parameter meaning of particle displacement function
|
|
Single shot record of different excitation lithology
|
|
Spectrum analysis of single shot with different excitation lithology
|
h/m | 岩性物理参数 | 理论子波参数 | ρ/(kg·m-3) | vp/(m·s-1) | vs/(m·s-1) | vp/vs | E/MPa | σ | fmax/Hz | fm/Hz | 10.1~10.3 | 1.983 | 1 645.514 | 909.509 | 1.809 | 4.200 | 0.280 | 93 | 55 | 11.1~11.3 | 1.895 | 1 605.104 | 892.710 | 1.798 | 3.854 | 0.276 | 74 | 44 | 12.1~12.3 | 1.754 | 1 552.143 | 948.353 | 1.637 | 3.793 | 0.202 | 61 | 36 | 13.1~13.3 | 1.809 | 1 600.750 | 960.753 | 1.666 | 3.986 | 0.192 | 54 | 32 | 14.1~14.3 | 1.891 | 1 672.460 | 1 006.892 | 1.661 | 4.248 | 0.197 | 50 | 29 | 15.1~15.3 | 1.818 | 1 688.450 | 1 038.967 | 1.625 | 4.610 | 0.195 | 45 | 26 | 16.1~16.3 | 1.999 | 1 700.342 | 1 056.778 | 1.609 | 5.292 | 0.185 | 41 | 24 |
|
Lithologic physical parameters and theoretical seismic wavelet parameters
|
|
Lithology optimization process
|
|
Comprehensive interpretation results of micro-logging, static cone penetration and lithologic coring
|
|
Autocorrelation wavelet of microlog data
|
|
Microlog correlation wavelet single-channel display
|
|
Four different correlated wavelet waveforms
|
|
Wavelet quantization analysis
|
|
3D surface lithologic structure model
|
|
Frequency distribution before(a) and after(b) excitation lithology optimization
|
|
YA 3D new (a) and old (b) prestack migration profiles
|
|
YA 3D spectral analysis of old and new migration profiles
|
|
SDX 3D new(a) and old(b) migration profiles
|
T 3 3 ">
|
SDX 3D spectrum analysis of new and old profiles of target layer
|
[1] |
王益民. 基于不同地表介质震源子波响应的炸药激发效果影响因素研究[D]. 杭州: 浙江大学, 2017.
|
[1] |
Wang Y M. Study on influencing factors of explosive excitation effect based on seismic source wavelet response of different surface media[D]. Hangzhou: Zhejiang University, 2017.
|
[2] |
高峻, 万应明, 黄波. 基于炸药激发子波特性选择激发井深[J]. 石油地球物理勘探, 2009, 44(S1):1-4.
|
[2] |
Gao J, Wan Y M, Huang B. Selection of excitation well depth based on the characteristics of explosive excitation wavelet[J]. Oil Geophysical Prospecting, 2009, 44(S1):1-4.
|
[3] |
王晓华, 杨汝超, 吴建文, 等. 炸药震源激发子波特性研究及最佳激发井深选择[J]. 石油物探, 2000, 39(3):79-86,99.
|
[3] |
Wang X H, Yang R C, Wu J W, et al. The determination of dynamite source wavelet and a research on amplitude and frequency responses:Concurrent discussion of determination of optimum excitation depth[J]. Geophysical Prospecting for Petroleum, 2000, 39(3):79-86,99.
|
[4] |
崔汝国, 王尚旭, 宁鹏鹏, 等. 炸药震源在济阳坳陷粘土介质中的激发理论初探[J]. 石油物探, 2009, 48(6):606-610.
|
[4] |
Cui R G, Wang S X, Ning P P, et al. Preliminary discussion on shooting theory for dynamite in clay medium of Jiyang Depression[J]. Geophysical Prospecting for Petroleum, 2009, 48(6):606-610.
|
[5] |
刘凯, 童思友, 刘怀山, 等. 复杂近地表区高分辨率地震勘探激发参数优选[J]. 地球物理学进展, 2013, 28(6):3040-3048.
|
[5] |
Liu K, Tong S Y, Liu H S, et al. The optimization of excitation parameters in the high-resolution seismic exploration on a complex near surface area[J]. Progress in Geophysics, 2013, 28(6):3040-3048.
|
[6] |
薛野, 杨帆, 刘厚裕, 等. 彭水地区碳酸盐岩山地地表地震激发接收因素优选及效果[J]. 物探与化探, 2022, 46(3):608-617.
|
[6] |
Xue Y, Yang F, Liu H Y, et al. Determination of the optimal factors of seismic excitation and reception on the ground surface of carbonate mountainous areas in Pengshui area and its seismic acquisition effects[J]. Geophysical and Geochemical Exploration, 2022, 46(3):608-617.
|
[7] |
陈楠. 三维空间内近地表激发井深设计插件的开发与应用[J]. 地球物理学进展, 2015, 30(2):940-946.
|
[7] |
Chen N. Three dimensional space in near surface excitation well depth design,development and application of the plug-in[J]. Progress in Geophysics, 2015, 30(2):940-946.
|
[8] |
吕公河. 弱弹性介质中炸药震源大基距面积组合激发效果分析[J]. 石油地球物理勘探, 2011, 46(6):851-855.
|
[8] |
Lyu G H. Analysis of shooting effects of dynamite source with areal array of large length in weak elastic medium[J]. Oil Geophysical Prospecting, 2011, 46(6):851-855.
|
[9] |
王文忠, 孙海川, 刘永亮. 黄土塬LA勘查区煤田地震勘探采集技术[J]. 物探与化探, 2018, 42(4):689-696.
|
[9] |
Wang W Z, Sun H C, Liu Y L. A study on coalfield seismic exploration parameter selection in LA exploration of loess tableland[J]. Geophysical and Geochemical Exploration, 2018, 42(4):689-696.
|
[10] |
孙海川, 刘永亮, 李健. 二维地震采集参数的选择——以潮水盆地HW勘查区为例[J]. 物探与化探, 2016, 40(6):1144-1150.
|
[10] |
Sun H C, Liu Y L, Li J. 2D seismic acquisition parameter selection:A case study of HW exploration area in Chaoshui Basin[J]. Geophysical and Geochemical Exploration, 2016, 40(6):1144-1150.
|
[11] |
张剑, 刘梦花, 苏腾飞, 等. 山前带砾石区激发技术优化[J]. 物探与化探, 2014, 38(6):1228-1234.
|
[11] |
Zhang J, Liu M H, Su T F, et al. The optimization of the excitation technique for the gravel-bearing piedmont zone[J]. Geophysical and Geochemical Exploration, 2014, 38(6):1228-1234.
|
[12] |
张卫华, 马中高, 周枫, 等. 雷州半岛南部玄武岩岩石物性与激发地震波属性关系研究[J]. 地球物理学进展, 2021, 36(2):706-715.
|
[12] |
Zhang W H, Ma Z G, Zhou F, et al. Study on the relationship between the physical properties of basalt rocks and the properties of excited seismic waves in the southern Leizhou Peninsula[J]. Progress in Geophysics, 2021, 36(2):706-715.
|
[13] |
梁亚南, 全建军, 彭志文. 泌阳凹陷王集地区高精度三维地震采集激发参数探讨[J]. 石油天然气学报, 2008, 30(3):237-239.
|
[13] |
Liang Y N, Quan J J, Peng Z W. A discussion of high accuracy 3D seismic acquisition of exploration parameters in Wangji area in Biyang Basin[J]. Journal of Oil and Gas Technology, 2008, 30(3):237-239.
|
[14] |
冯晓强, 朱峰, 石一青, 等. 江苏探区影响地震资料分辨率因素研究与对策[J]. 石油物探, 2021, 60(S1):60-69.
|
[14] |
Feng X Q, Zhu F, Shi Y Q, et al. Study on the factors affecting the resolution of seismic data in Jiangsu exploration area and its countermeasures[J]. Geophysical Prospecting for Petroleum, 2021, 60(S1):60-69.
|
[15] |
张志林, 刘斌, 何京国, 等. 青海都兰盐沼区地震采集关键技术研究[J]. 物探与化探, 2014, 38(3):510-515.
|
[15] |
Zhang Z L, Liu B, He J G, et al. A study of the key seismic acquisition technology in the salt marsh area of Dulan,Qinhai province[J]. Geophysical and Geochemical Exploration, 2014, 38(3):510-515.
|
[16] |
王咸彬. 准噶尔盆地南缘山前带激发因素分析[J]. 勘探地球物理进展, 2008, 31(1):59-64.
|
[16] |
Wang X B. Discussion on shooting factors in the foothill in southern Junggar Basin[J]. Progress in Exploration Geophysics, 2008, 31(1):59-64.
|
[17] |
宋智强, 刘斌, 陈吴金, 等. 塔河油田近地表微测井记录中低频段研究[J]. 物探与化探, 2014, 38(1):46-50.
|
[17] |
Song Z Q, Liu B, Chen W J, et al. The study of the low-frequency section in the near-surface micro-logging record of the Tahe oilfield[J]. Geophysical and Geochemical Exploration, 2014, 38(1):46-50.
|
[18] |
杨明生. 塔里木巴楚地区复杂地表条件下激发井深设计[J]. 东华理工大学学报:自然科学版, 2014, 37(2):220-224,239.
|
[18] |
Yang M S. Design of the shooting hole depth under the complicated complex geology’s shallow layer condition in Tarim basin[J]. Journal of East China Institute of Technology:Natural Science, 2014, 37(2):220-224,239.
|
[19] |
魏明阳. 巴楚地区基于多重条件下约束下激发参数设计[J]. 地球物理学进展, 2014, 29(6):2774-2778.
|
[19] |
Wei M Y. How choose the mode of the seismic excitation,under the complicated complex geology’s shallow layer condition in Tarim basin[J]. Progress in Geophysics, 2014, 29(6):2774-2778.
|
[20] |
云美厚, 赵秋芳, 李晓斌. 地震分辨率思考与高分辨率勘探对策[J]. 石油地球物理勘探, 2022, 57(5):1250-1262,1010.
|
[20] |
Yun M H, Zhao Q F, Li X B. Thought about seismic resolution and countermeasures of high-resolution seismic exploration[J]. Oil Geophysical Prospecting, 2022, 57(5):1250-1262,1010.
|
[21] |
俞寿朋. 高分辨率地震勘探[M]. 北京: 石油工业出版社, 1993.
|
[21] |
Yu S P. High resolution seismic exploration[M]. Beijing: Petroleum Industry Press, 1993.
|
[1] |
ZHANG Jian-Lei, WANG Peng-Fei, SUN Yun-Song, LI Guo-Fa. A multi-channel deconvolution method for self-adaptive signal recognition[J]. Geophysical and Geochemical Exploration, 2024, 48(6): 1702-1708. |
[2] |
YUE Hang-Yu, ZHANG Ming-Dong, ZHANG Bao-Wei, WANG Guang-Ke, WANG Xiao-Jiang, LIU Dong-Ming. An experimental study on the high-resolution single-channel seismic exploration technology for inland shallow waters[J]. Geophysical and Geochemical Exploration, 2022, 46(4): 914-924. |
|
|
|
|