|
|
Study on deep geological environmental characteristics of the Shazaoyuan area |
LUO Hui1,2( ), CHEN Wei-Ming1,2, LI Ya-Wei1,2, TIAN Xiao1,2, ZHANG Jing-Jia1,2 |
1. Beijing Research Institute of Uranium Geology,Beijing 100029, China 2. CAEA Innovation Center for Geological Disposal of High-level Radioactive Waste, Beijing 100029, China |
|
|
Abstract Through surface geological surveys, geophysical measurements, borehole investigations, and 3D geological modeling, the deep geological environment of the Shazaoyuan area has been studied. The lithology, structural spatial distribution, rock integrity at depth, and engineering geological characteristics of the Shazaoyuan area have been preliminarily identified. The main findings are as follows: The granite rock mass in the Shazaoyuan area has a large exposed surface, with relatively uniform lithology, primarily composed of biotite granodiorite of the Shazaoyuan superunit, covering an area of about 330 km2. The granite body dips outward and extends to a depth greater than 2 km. There are 12 faults developed in three main orientations: North-northwest, near north-south, and northeast, all with steep dips and intersecting the rock mass. Fractures are well developed in the deep part of the granite, mostly with steep dips and filled with minerals such as calcite and clay. Preliminary delineation has identified more than two favorable rock masses in the pre-selected Shazaoyuan area, which may serve as potential candidate sites for high-level radioactive waste disposal facilities.Though the research,it is proved that the Shazaoyan area has favorable geological conditions for screening the high-level waste disposal bank.
|
Received: 12 October 2024
Published: 08 January 2025
|
|
|
|
|
序号 | 地层名称 及代号 | 出露面积/ km2 | 占图幅 比例/% | 1 | 全新统洪积砾石、砂砾(Qhpl) | 34.46 | 4.46 | 2 | 全新统风积砂土、含细砾砂土(Qheol) | 4.29 | 0.55 | 3 | 上更新统洪积砂砾石( ) | 157.51 | 20.41 | 4 | 中更新统湖积粉砂质黏土( ) | 7.11 | 0.92 | 5 | 白垩系下统新民堡群(K1X) | 88.55 | 11.48 | 6 | 侏罗系中统水西沟群(J2S) | 6.8 | 0.88 | 7 | 奥陶系花牛山群(OH) | 30.74 | 3.98 | 8 | 长城系铅炉子沟群(ChQ) | 42.69 | 5.53 | 9 | 长城系古硐井群(ChG) | 24.51 | 3.18 |
|
Statistics of stratum exposure in the Shazaoyuan area
|
|
Simplified geological map of the Shazaoyuan area
|
时代 | 超单元 | 单元 | 地质年龄/Ma | 代号 | 岩石类型 | 出露面积/km2 | 三 叠 纪 | 中三叠世 | | 老鹰窝沟南山南 | 238~241 | T2LNξγ | 中粒正长花岗岩 | 6.70 | 早三叠世 | 红柳沙山 | 沙枣园北 | 248~252 | T1SBηγ | 中粒黑云二长花岗岩 | 17.71 | 鹿咀子西黑山东 | - | T1LDηγ | 中细粒二长花岗岩 | 5.80 | 二 叠 纪 | 晚二叠世 | 沙枣园 | 老鹰窝沟南山东 | 254±5 | P2LDηγ | 中细粒黑云二长花岗岩 | 0.22 | 枯井 | 249~251、261、266 | P2Kγδ | 中细粒黑云花岗闪长岩 | 327.00 | 早二叠世 | | 黑山北滩东 | - | P1HDγδπ | 似斑状黑云花岗闪长岩 | 12.32 | 小黄山西 | - | P1XXηγ | 中细粒黑云二长花岗岩 | 3.51 | 黑山 | 251~253 | P1Hδο | 黑云石英闪长岩 | 0.77 | 黑山北滩南 | - | P1HNδ | 细粒闪长岩 | 1.21 |
|
Division of intrusive rock units in the Shazaoyuan area
|
序号 | 编号 | 长度/km | 产状 | 断裂特征 | 1 | F1 | 20.5 | 倾向55°~76°,倾角52°~67° | 剪张性 | 2 | F2 | 13.0 | 倾向46°~57°,倾角44°~60° | 剪张性 | 3 | F3 | 6.2 | 倾向227°~247°,倾角57°~72° | 剪张性 | 4 | F4 | 17.5 | 倾向225°~244°,倾角62° | 压扭性 | 5 | F5 | 7.5 | 倾向245°~275°,倾角75° | 扭性 | 6 | F6 | 8.5 | 倾向310°~335°,倾角57°~76° | 张性 | 7 | F7 | 1.5 | 与F6同 | 张性 | 8 | F8 | 1.5 | 产状不明 | 张性 | 9 | F9 | 7.8 | 产状不明 | 张性 | 10 | F10 | 7.1 | | 性质不明 | 11 | F11 | 2.5 | 300°∠65° | 张性 | 12 | F12 | 3.7 | 65°∠60° | 性质不明 |
|
Fault characteristics in the Shazaoyuan area
|
|
2D inversion section of AMT resistivity measurements in the Shazaoyuan area
|
|
Fracture dip angle statistics for boreholes BS20 and BS21 core samples
|
岩石质量 指标(RQD) | BS20钻孔 比例/% | BS21钻孔 比例/% | 岩石评价 | 0~25 | 0.7 | 3.7 | 极差 | 25~50 | 2.0 | 8.1 | 差 | 50~75 | 3.8 | 15.5 | 一般 | 75~90 | 3.6 | 19.6 | 很好 | 90~100 | 90 | 53.0 | 极好 |
|
Statistics of borehole rock quality classification
|
|
3D fracture model of the Shazaoyuan area
|
|
3D geological model of Shazaoyuan area
|
|
Spatial location of potential sites
|
[1] |
Savage D. The scientific and regulatory basis for the geological disposal of radioactive waste[M]. Chichester: John Wiley and Sons, 1995.
|
[2] |
潘自强, 沈文权. 2020年前我国核能发展的策略和目标研究[J]. 铀矿地质, 2004, 20(5):257-259.
|
[2] |
Pan Z Q, Shen W Q. Tactics and targets for nuclear energy development in China by 2020[J]. Uranium Geology, 2004, 20(5):257-259.
|
[3] |
潘自强, 钱七虎. 高放废物地质处置战略研究[M]. 北京: 原子能出版社, 2009.
|
[3] |
Pan Z Q, Qian Q H. Strategic research on geological disposal of high-level radioactive waste[M]. Beijing: Atomic Energy Press, 2009.
|
[4] |
王驹. 高放废物地质处置:进展与挑战[J]. 中国工程科学, 2008, 10(3):58-65.
|
[4] |
Wang J. Geological disposal of high level radio active waste:Progress and challenges[J]. Engineering Science, 2008, 10(3):58-65.
|
[5] |
王驹, 陈伟明, 苏锐, 等. 高放废物地质处置及其若干关键科学问题[J]. 岩石力学与工程学报, 2006, 25(4):801-812.
|
[5] |
Wang J, Chen W M, Su R, et al. geological disposal of high-level radioactive waste and its key scientific issues[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(4):801-812.
|
[6] |
王驹, 徐国庆, 郑华铃, 等. 中国高放废物地质处置研究进展1985-2004[J]. 世界核地质科学, 2005, 22(1):5-16.
|
[6] |
Wang J, Xu G Q, Zhen H L, et al. Geological disposal of high level radioactive waste in China:Progress during 1985-2004[J]. World Nuclear Geoscience, 2005, 22 (1):5-16.
|
[7] |
苏锐, 程琦福, 王驹, 等. 我国高放废物地质处置库场址筛选总体技术思路探讨[J]. 世界核地质科学, 2011, 28(1):45-51.
|
[7] |
Su R, Cheng Q F, Wang J, et al. Discussion on technical ideas of site selection of geological disposal repository for high-level radioactive waste in China[J]. World Nuclear Geoscience, 2011, 28(1):45-51.
|
[8] |
闵茂中. 高放废物地质处置的地质介质选择[J]. 核科学与工程, 1991, 11(4):353-362.
|
[8] |
Min M Z. On selection of geological medium for disposal of high-level radwaste[J]. Chinese Journal of Nuclear Science and Engneering, 1991, 11(4):353-362.
|
[9] |
王驹, 郭永海, 陈伟明, 等. 高放废物地质处置甘肃北山预选区选址和场址评价研究[R]. 核工业北京地质研究院, 2007.
|
[9] |
Wang J, Guo Y H, Chen W M, et al. Study on the site selection and site evaluation of the geological disposal of high-level radioactive waste in Beishan pre-selection area,Gansu[R]. Beijing Geological Research Institute of Nuclear Industry, 2007.
|
[10] |
王驹. 中国高放废物地质处置21世纪进展[J]. 原子能科学技术, 2019, 53(10):2072-2082.
|
[10] |
Wang J. Progress of geological disposal of high-level radioactive waste in China in the 21st century[J]. Atomic Energy Science and Technology, 2019, 53(10):2072-2082.
|
[11] |
王驹, 金远新, 陈伟明, 等. 中国高放废物地质处置库场址区域筛选[R]. 核工业北京地质研究院, 2009.
|
[11] |
Wang J, Jin Y X, Chen W M, et al. Site selection of geological repository for high-level radioactive waste in China[R]. Beijing Geological Research Institute of Nuclear Industry, 2009.
|
[12] |
罗辉, 王驹, 蒋实, 等. 高放废物地质处置新场岩体三维地质模型构建与应用[J]. 物探与化探, 2019, 43(3):568-575.
|
[12] |
Luo H, Wang J, Jiang S, et al. Construction and application of three-dimensional geological model in Xinchang Block for high-level radioactive waste disposal[J]. Geophysical and Geochemical Exploration, 2019, 43(3):568-575.
|
[13] |
罗辉, 王驹, 蒋实, 等. 高放废物地质处置地下实验室新场候选场址三维地质建模[J]. 铀矿地质, 2017, 33(3):178-183.
|
[13] |
Luo H, Wang J, Jiang S, et al. Study on 3D geological modeling of Xinchang potential underground laboratory site for high-level radioactive waste disposal[J]. Uranium Geology, 2017, 33(3):178-183.
|
[14] |
赵宏刚, 王驹, 杨春和, 等. 甘肃北山旧井地段高放废物处置库深度初步探讨[J]. 岩石力学与工程学报, 2007(S2):3966-3973.
|
[14] |
Zhao H G, Wang J, Yang C H, et al. Preliminary discussion on depth for high-level radioactive waste repository in Jiujing block,Beishan area,Gansu Province[J]. Chinese Journal of Rock Mechanics and Engineering, 2007(S2):3966-3973.
|
[15] |
王锡勇, 李冬伟, 成功, 等. 高放废物地质处置的岩体深部结构面特征研究——以甘肃北山高放废物地质处置地下实验室工程为例[J]. 物探与化探, 2018, 42(3):481-490.
|
[15] |
Wang X Y, Li D W, Cheng G, et al. Geological disposal of high-level radioactive wastebase to study the structural plane of deep rock mass:A case study of geological disposal of high-level radioactive waste used in the underground research laboratory of Gansu Beishan area[J]. Geophysical and Geochemical Exploration, 2018, 42(3):481-490.
|
[16] |
陈伟明, 王驹, 赵宏刚, 等. 高放废物地质处置北山预选区新场地段地质特征[J]. 岩石力学与工程学报, 2007(S2):4000-4006.
|
[16] |
Chen W M, Wang J, Zhao H G, et al. geological characters of Xinchang section in pre-selected beishan region for high-level radioactive waste disposal[J]. Chinese Journal of Rock Mechanics and Engineering, 2007(S2):4000-4006.
|
[17] |
罗辉, 蒋实, 赵宏刚, 等. 三维地质建模在高放废物地质处置预选地段筛选中的应用——以新疆预选区天湖预选地段为例[J]. 物探与化探, 2021, 45(6):1488-1496.
|
[17] |
Luo H, Jiang S, Zhao H G, et al. Application of 3D geological modeling in screening of sites preselected for geological disposal of high-level radioactive waste—A case study of Tianhu preselected site,Xinjiang[J]. Geophysical and Geochemical Exploration, 2021, 45(6):1488-1496.
|
[18] |
罗辉, 陈伟明, 周志超, 等. 高放废物地质处置预选地段调查与适宜性研究[J]. 物探与化探, 2023, 47(6):1479-1489.
|
[18] |
Luo H, Chen W M, Zhou Z C, et al. Investigation and suitability study of pre-selected sites for geological disposal of high level radioactive waste[J]. Geophysical and Geochemical Exploration, 2023, 47(6):1479-1489.
|
|
|
|