|
|
Log-based identification of the types of the Maokou Formation carbonate reservoirs in the central Sichuan Basin |
LIU Yu( ), WANG Liang, LUO Yang, SU Shu-Te, YAO Lin-Fang, LIU Yu-Chao, ZHOU Chun-Run, HU Meng-Die |
College of Energy, Chengdu University of Technology, Chengdu 610059, China |
|
|
Abstract The Maokou Formationcarbonate reservoirs in the central Sichuan Basinexhibit well-developed dissolutionpores, vugs, and fractures, pronounced heterogeneity, and diverse types. This study aims to identify their types and establish the log-based identification criteria for various reservoir types. First, this study classified the reservoir types based on the analysis of casting thin sections, core photos, and micro-resistivity imaging logs.Moreover, it determined the conventional log response characteristics of different reservoir types. Finally, it conducted log-based identification of reservoir types using the fracture porosity (φf) -secondary porosity index (RP) cross-plotting method. The results are as follows: (1)The Maokou Formation carbonate reservoirs in the central Sichuan Basin can beclassified into four types, i.e., fractured-vuggy, fractured-porous, porous-vuggy, and matrix porous reservoirs;(2) Fracture porosities calculated from different models are more similar in the case of more developed fractures, and dissolution pores and vugscan affect the fracture porositycalculation results to some extent;(3) The φf-RP cross-plotting method can effectively identify reservoir types. These research results provide technical support for the log-based identification of carbonate reservoir types.
|
Received: 07 July 2023
Published: 27 June 2024
|
|
|
|
|
|
The diagrammatic plan of geographic position and Maokou Formation lithological column of research area
|
|
Photograph of reservoir characteristics of Member 2 of Maokou Formation in the study area
|
|
Comparison of core and thin section, imaging logging and conventional logging response of different reservoirs
|
裂缝状态 | Y | A1 | A2 | A3 | 低角度裂缝 | Y≤0 | -9.992417 | 1.97247 | 0.000318291 | 倾斜裂缝 | 0<Y<0.1 | -17.6332 | 20.36451 | 0.00093177 | 高角度裂缝 | Y≥0.1 | 8.522532 | -8.242788 | 0.00071236 |
|
Constant values corresponding to different farcture states
|
|
Comparison of fracture porosity calculated by two methods in each reservoir
|
|
Reservoir type identification chart
|
储层类型 | /% | | 缝洞型储层 | ≥0.075 | ≥0.5 | 裂缝—孔隙型储层 | ≥0.075 | <0.5 | 孔洞型储层 | <0.075 | ≥0.5 | 基质孔隙型储层 | <0.075 | <0.5 |
|
Criteria for quantitative identification of reservoir types
|
|
X1 well Maokou Formation reservoir type identification results
|
|
X2 well Maokou Formation reservoir type identification results
|
[1] |
李宁. 中国海相碳酸盐岩测井解释概论[M]. 北京: 科学出版社, 2013.
|
[1] |
Li N. Introduction to logging interpretation of China marine carbonate rocks[M]. Beijing: Science Press, 2013.
|
[2] |
李宁, 肖承文, 伍丽红, 等. 复杂碳酸盐岩储层测井评价:中国的创新与发展[J]. 测井技术, 2014, 38(1):1-10.
|
[2] |
Li N, Xiao C W, Wu L H, et al. The innovation and development of log evaluation for complex carbonate reservoir in China[J]. Well Logging Technology, 2014, 38(1):1-10.
|
[3] |
金振奎, 冯增昭. 滇东—川西下二叠统白云岩的形成机理——玄武岩淋滤白云化[J]. 沉积学报, 1999, 17(3):383-389.
|
[3] |
Jin Z K, Feng Z Z. Origin of dolostones of the Lower Permian in East Yunnan-West sichuan—Dolomitization through leaching of basalts[J]. Acta Sedimentologica Sinica, 1999, 17(3):383-389.
|
[4] |
汪华, 沈浩, 黄东, 等. 四川盆地中二叠统热水白云岩成因及其分布[J]. 天然气工业, 2014, 34(9):25-32.
|
[4] |
Wang H, Shen H, Huang D, et al. Origin and distribution of hydrothermal Dolomites of the Middle Permian in the Sichuan Basin[J]. Natural Gas Industry, 2014, 34(9):25-32.
|
[5] |
陈宗清. 四川盆地中二叠统茅口组天然气勘探[J]. 中国石油勘探, 2007, 12(5):1-11,78.
|
[5] |
Chen Z Q. Exploration for natural gas in middle Permian Maokou formation of Sichuan Basin[J]. China Petroleum Exploration, 2007, 12(5):1-11,78.
|
[6] |
洪海涛, 杨雨, 刘鑫, 等. 四川盆地海相碳酸盐岩储层特征及控制因素[J]. 石油学报, 2012, 33(S2):64-73.
|
[6] |
Hong H T, Yang Y, Liu X, et al. Characteristics and controlling factors of marine carbonate reservoirs in Sichuan Basin[J]. Acta Petrolei Sinica, 2012, 33(S2):64-73.
|
[7] |
薛宗安, 胡志方, 肖玉峰, 等. 中东地区强非均质性碳酸盐岩储层测井评价方法及应用[J]. 科学技术与工程, 2022, 22(7):2654-2663.
|
[7] |
Xue Z A, Hu Z F, Xiao Y F, et al. Logging evaluation method and application of strongly heterogeneous carbonate reservoir in the Middle East[J]. Science Technology and Engineering, 2022, 22(7):2654-2663.
|
[8] |
李宁, 肖承文, 伍丽红, 等. 复杂碳酸盐岩储层测井评价:中国的创新与发展[J]. 测井技术, 2014, 38(1):1-10.
|
[8] |
Li N, Xiao C W, Wu L H, et al. The innovation and development of log evaluation for complex carbonate reservoir in China[J]. Well Logging Technology, 2014, 38(1):1-10.
|
[9] |
李昌, 司马立强, 沈安江, 等. 电成像测井储层非均质性评价方法在川东北G地区FC段地层的应用[J]. 地球物理学进展, 2015, 30(2):725-732.
|
[9] |
Li C, Sima L Q, Shen A J, et al. The application of the reservoir heterogeneity evaluate method with microresistivity image log in FC Formation of G region in northeastern Sichuan[J]. Progress in Geophysics, 2015, 30(2):725-732.
|
[10] |
田杰, 王亮, 司马立强, 等. 基于微电阻率成像测井的储集层物性及孔隙结构表征——孔隙度谱、渗透率谱及等效毛管压力曲线[J]. 石油勘探与开发, 2023, 50(3):553-561.
|
[10] |
Tian J, Wang L, Sima L Q, et al. Characterization of reservoir properties and pore structure based on micro-resistivity imaging logging:Porosity spectrum,permeability spectrum,and equivalent capillary pressure curve[J]. Petroleum Exploration and Development, 2023, 50(3):553-561.
|
[11] |
马立文, 窦齐丰, 彭仕宓, 等. 用Q型聚类分析与判别函数法进行储层评价——以冀东老爷庙油田庙28X1区块东一段为例[J]. 西北大学学报:自然科学版, 2003, 33(1):83-86.
|
[11] |
Ma L W, Dou Q F, Peng S M, et al. Comprehensively applying Q-Model gathering and discriminant function methods to reservoir classification and evaluation:Taking Ed1No.of Miao 28X1 block in Laoyemiao Oilfield in Jidong as an example[J]. Journal of Northwest University:Natural Science Edition, 2003, 33(1):83-86.
|
[12] |
顾战宇, 杨斌. 塔河油田八区奥陶系碳酸盐岩缝洞储层测井识别研究[J]. 矿物岩石, 2010, 30(3):89-95.
|
[12] |
Gu Z Y, Yang B. Study of identifying logging in carbonate reservoir of Ordovician in eight block,Tahe oil field[J]. Journal of Mineralogy and Petrology, 2010, 30(3):89-95.
|
[13] |
赵军, 刘彦斌, 王菲菲, 等. 碳酸盐岩缝洞型储层类型识别与分类预测[J]. 中国岩溶, 2018, 37(4):584-591.
|
[13] |
Zhao J, Liu Y B, Wang F F, et al. Identification and classification prediction of fractured-vuggy reservoir type in carbonate rocks[J]. Carsologica Sinica, 2018, 37(4):584-591.
|
[14] |
李政宏, 张立强, 陈曦, 等. 缝洞型碳酸盐岩储层测井识别——以塔中东部良里塔格组良二段为例[J]. 天然气地球科学, 2019, 30(12):1805-1814.
|
[14] |
Li Z H, Zhang L Q, Chen X, et al. Logging identification of fractured-vuggy carbonate reservoirs:Case study from the second section of Lianglitage Formation in the eastern part of Tazhong area[J]. Natural Gas Geoscience, 2019, 30(12):1805-1814.
|
[15] |
李功强, 赵永刚, 江子凤, 等. 塔河油田托普台区碳酸盐岩储层类型判别方法及应用[J]. 工程地球物理学报, 2013, 10(3):338-343.
|
[15] |
Li G Q, Zhao Y G, Jiang Z F, et al. Identification of carbonate reservoir types in Tahe oil field of tuoputai region and its application[J]. Chinese Journal of Engineering Geophysics, 2013, 10(3):338-343.
|
[16] |
杜金虎. 古老碳酸盐岩大气田地质理论与勘探实践[M]. 北京: 石油工业出版社, 2015.
|
[16] |
Du J H. Geologic theory and exploration practice of ancient largecarbonates gas Field[M]. Beijing: Petroleum Industry Press, 2015.
|
[17] |
杨光, 汪华, 沈浩, 等. 四川盆地中二叠统储层特征与勘探方向[J]. 天然气工业, 2015, 35(7):10-16.
|
[17] |
Yang G, Wang H, Shen H, et al. Characteristics and exploration prospects of Middle Permian Reservoirs in the Sichuan Basin[J]. Natural Gas Industry, 2015, 35(7):10-16.
|
[18] |
周进高, 郝毅, 邓红婴, 等. 四川盆地中西部栖霞组—茅口组孔洞型白云岩储层成因与分布[J]. 海相油气地质, 2019, 24(4):67-78.
|
[18] |
Zhou J G, Hao Y, Deng H Y, et al. Genesis and distribution of vuggy dolomite reserviors of the Lower Permian Qixia Formation and Maokou Formation,western-central Sichuan Basin[J]. Marine OriginPetroleum Geology, 2019, 24(4):67-78.
|
[19] |
罗志立. 地裂运动与中国油气分布[M]. 北京: 石油工业出版社,1991.
|
[19] |
Luo Z L. Ground fissure movement and oil and gas distribution in China[M]. Beijing: Petroleum Industry Press,1991.
|
[20] |
朱传庆, 徐明, 袁玉松, 等. 峨眉山玄武岩喷发在四川盆地的地热学响应[J]. 科学通报, 2010, 55(6):474-482.
|
[20] |
Zhu C Q, Xu M, Yuan Y S, et al. Geothermal response of Emeishan basalt eruption in Sichuan Basin[J]. Chinese Science Bulletin, 2010, 55(6):474-482.
|
[21] |
何斌, 徐义刚, 肖龙, 等. 峨眉山大火成岩省的形成机制及空间展布:来自沉积地层学的新证据[J]. 地质学报, 2003, 77(2):194-202.
|
[21] |
He B, Xu Y G, Xiao L, et al. Generation and spatial distribution of the Emeishan large igneous province:New evidence from stratigraphic records[J]. Acta GeologicaSinica, 2003, 77(2):194-202.
|
[22] |
贺川航, 鲜成龙, 林煜, 等. 川中茅口组白云岩储层预测关键技术研究与应用[J]. 石油物探, 2021, 60(2):342-352.
|
[22] |
He C H, Xian C L, Lin Y, et al. KeytechnologiesforthepredictionofDolomite Reservoirs in the Maokou Formation in central Sichuan[J]. Geophysical Prospecting for Petroleum, 2021, 60(2):342-352.
|
[23] |
刘建强, 郑浩夫, 刘波, 等. 川中地区中二叠统茅口组白云岩特征及成因机理[J]. 石油学报, 2017, 38(4):386-398.
|
[23] |
Liu J Q, Zheng H F, Liu B, et al. Characteristics and genetic mechanism of the dolomite in the Middle Permian Maokou Formation,central Sichuan area[J]. Acta Petrolei Sinica, 2017, 38(4):386-398.
|
[24] |
陈轩, 赵文智, 张利萍, 等. 川中地区中二叠统构造热液白云岩的发现及其勘探意义[J]. 石油学报, 2012, 33(4):562-569.
|
[24] |
Chen X, Zhao W Z, Zhang L P, et al. Discovery and exploration significance of structure-controlled hydrothermal Dolomites in the Middle Permian of the central Sichuan Basin[J]. Acta Petrolei Sinica, 2012, 33(4):562-569.
|
[25] |
Tian J, Wang L, Zhao RR,etal. Improved triple porosity model for calculating porosity exponent of fractured-vuggy reservoirs based on Maxwell-Garnett mixing rule and anisotropic conductivity analysis[J]. Journal of Petroleum Science and Engineering, 2022,212:110265.
|
[26] |
Tian J, Sima L Q, WangL, et al. A novel triple-porosity model for fractured-vuggy reservoirs based on Maxwell-Garnett mixing rule[J]. Journal of Petroleum Science and Engineering, 2022,208:109362.
|
[27] |
李双建, 杨天博, 韩月卿, 等. 四川盆地中二叠统热液白云岩化作用及其储层改造意义[J]. 石油与天然气地质, 2021, 42(6):1265-1280.
|
[27] |
Li S J, Yang T B, Han Y Q, et al. Hydrothermal dolomitization and its role in improving Middle Permian Reservoirs for hydrocarbon accumulation,Sichuan Basin[J]. Oil & Gas Geology, 2021, 42(6):1265-1280.
|
[28] |
黎霆, 诸丹诚, 杨明磊, 等. 热液活动对四川盆地中西部地区二叠系茅口组白云岩的影响[J]. 石油与天然气地质, 2021, 42(3):639-651.
|
[28] |
Li T, Zhu D C, Yang M L, et al. Influence of hydrothermal activity on the Maokou Formation dolostone in the central and western Sichuan Basin[J]. Oil & Gas Geology, 2021, 42(3):639-651.
|
[29] |
郝毅, 姚倩颖, 田瀚, 等. 四川盆地二叠系茅口组沉积特征及储层主控因素[J]. 海相油气地质, 2020, 25(3):202-209.
|
[29] |
Hao Y, Yao Q Y, Tian H, et al. Sedimentary characteristics and reservoir controlling factors of Permian Maokou Formation in Sichuan Basin[J]. Marine Origin Petroleum Geology, 2020, 25(3):202-209.
|
[30] |
雍世和, 张超谟. 测井数据处理与综合解释[M]. 东营: 中国石油大学出版社,1996.
|
[30] |
Yong S H, Zhang C M. Logging data processing and comprehensive interpretation[M]. Dongying: China University of Petroleum Press,1996.
|
[31] |
李善军, 汪涵明, 肖承文, 等. 碳酸盐岩地层中裂缝孔隙度的定量解释[J]. 测井技术, 1997, 21(3):205-215.
|
[31] |
Li S J, Wang H M, Xiao C W, et al. Quantitative interpretation of fracture porosity in carbonate formation[J]. Well Logging Technology, 1997, 21(3):205-214.
|
[32] |
李善军. 用三维有限元素法反演单一灰岩裂缝性储层的裂缝孔隙度和裂缝倾角[J]. 测井技术, 1998, 22(6):28-31.
|
[32] |
Li S J. Inversion of fracture porosity and fracture dip angle of single limestone fractured reservoir bythree-dimensionalfinite element method[J]. Well Logging Technology, 1998, 22(6):28-31.
|
[33] |
陆云龙, 崔云江, 李瑞娟, 等. 基于多孔介质模型的储层裂缝孔隙度计算方法[J]. 西南石油大学学报:自然科学版, 2019, 41(5):67-74.
|
[33] |
Lu Y L, Cui Y J, Li R J, et al. Calculation method of reservoir fracture porosity based on porous media model[J]. Journal of Southwest Petroleum University:Science & Technology Edition, 2019, 41(5):67-74.
|
[34] |
王晓畅, 李军, 张松扬, 等. 基于测井资料的裂缝面孔率标定裂缝孔隙度的数值模拟及应用[J]. 中国石油大学学报:自然科学版, 2011, 35(2):51-56.
|
[34] |
Wang X C, Li J, Zhang S Y, et al. Numerical simulation and application of fracture surface porosity calibrating fracture porosity by logging data[J]. Journal of China University of Petroleum:Edition of Natural Science, 2011, 35(2):51-56.
|
[35] |
Pezard P, AndersonR. In situ measurements of electrical resistivity,formation anisotropy,and tectonic context[C]// SPWLA 31st Aonual Lagging Sgmposium,1990.
|
[36] |
范高尔夫—拉特. 裂缝油藏工程基础[M],陈钟祥译. 北京: 石油工业出版社,1989.
|
[36] |
Van golf-racht. Fundamentals of fractured reservoir engineering[M]. Chen Zhongxiang,Translation.Beijing: Petroleum Industry Press,1989.
|
[37] |
魏伯阳. 基于测井图像的机器学习识别裂缝并预测裂缝孔隙度[D]. 长春: 吉林大学, 2020.
|
[37] |
Wei B Y. Machine learning based on logging images identifies fractures and predicts fracture porosity[D]. Changchun: Jilin University, 2020.
|
[38] |
陈义国, 赵谦平, 杨文博, 等. 双侧向测井裂缝孔隙模型考察与改进[J]. 大庆石油地质与开发, 2011, 30(4):171-174.
|
[38] |
Chen Y G, Zhao Q P, Yang W B, et al. Examination and improvement of fracture-pore model for dual-lateral logging[J]. Petroleum Geology & Oilfield Development in Daqing, 2011, 30(4):171-174.
|
[39] |
樊政军, 柳建华, 马勇. 塔河油田石灰岩洞缝型储层测井评价[J]. 天然气工业, 2007, 27(7):45-48,135.
|
[39] |
Fan Z J, Liu J H, Ma Y. Logging evaluation for cave- and pore-type limestone reservoirs in Tahe oilfield[J]. Natural Gas Industry, 2007, 27(7):45-48,135.
|
[40] |
赵辉, 石新, 司马立强. 裂缝性储层孔隙指数、饱和度及裂缝孔隙度计算研究[J]. 地球物理学进展, 2012, 27(6):2639-2645.
|
[40] |
Zhao H, Shi X, Sima L Q. Study on porosity exponent,saturation and fracture porosity for fractured reservoirs[J]. Progress in Geophysics, 2012, 27(6):2639-2645.
|
[41] |
孙建孟, 刘蓉, 梅基席, 等. 青海柴西地区常规测井裂缝识别方法[J]. 测井技术, 1999, 23(4):268-272.
|
[41] |
Sun J M, Liu R, Mei J X, et al. Fractureidentificationmethodofconventional logging in Chaixi area,Qinghai Province[J]. Well Logging Technology, 1999, 23(4):268-272.
|
[42] |
景建恩, 梅忠武, 李舟波. 塔河油田碳酸盐岩缝洞型储层的测井识别与评价方法研究[J]. 地球物理学进展, 2003, 18(2):336-341.
|
[42] |
Jing J E, Mei Z W, Li Z B. Investigation of well logging evaluation and identification methods for carbonate reservoirs with fracture and vug in Tahe oil field[J]. Progress In Geophysics, 2003, 18(2):336-341.
|
[1] |
PEI Sheng-Liang, QU Jian-Xin, ZHANG Peng. Log-based identification of gas-bearing shales in the Longmaxi Formation of the Laifeng area: A case study of well WY1[J]. Geophysical and Geochemical Exploration, 2024, 48(2): 403-410. |
[2] |
Xiu-Gang MA, Jun ZHOU, Wen-Yuan CAI, Wei WANG, Wei-Gao YU, Xian-Jun CAO, Pei SUN. The combined application of reflective wave imaging and P-wave velocity variation to the exploration and development of fractured carbonate reservoirs of North China Oilfield[J]. Geophysical and Geochemical Exploration, 2020, 44(2): 271-277. |
|
|
|
|